In this paper, we study the processes of mixing when using the technology of transportation of light oil products-sequential pumping by direct contact. Modeling of mixing processes is carried out taking into account the influence of parametric and thermodynamic factors. For numerical modeling, a software package was developed that allows not only modeling and calculating the parameters of the oil pipeline operation in real time with subsequent graphical visualization, but also comparing them with real data processed by operators at production facilities.
The possibility of developing the liquefied natural gas (LNG) market in the Russian Federation can be realized by increasing the projects of low-tonnage LNG production. The development of LNG production projects at gas distribution stations should be a priority, since in this case it is possible to implement various production schemes: expander, throttle or cycle with a vortex pipe. To assess the efficiency of the use of low-tonnage LNG production at gas distribution stations (GDS), the dynamics of changes in maximum and minimum pressure values in the main gas pipeline, as well as the distribution of GDS by seasonal change in pressure drop and throughput are presented. To assess the operability and applicability of the work, a design model of the natural gas liquefaction throttle cycle was built and numerical modeling of its operation was carried out at seasonal fluctuations in pressures and GDS costs, which showed a strong dependence on these fluctuations and a low degree of natural gas liquefaction. In order to further modernize the liquefaction cycles of natural gas, modeling was carried out according to the turbo expander cycle, which also showed a dependence on seasonality, but a higher degree of liquefaction of natural gas, which during modeling reached more than 8%. The final stage was the construction of a design model of the combined technology — throttling and turbo expander cycles, as well as numerical modeling, which showed the possibility of increasing the liquefaction of natural gas at GDS to 19%, but the impact of seasonal fluctuations also remains significant. Summing up, it can be said that the work has worked out options for the transition from the throttle cycle to the throttle-expander and turbo-expander, as a result of which it was concluded that the operation of each cycle is effective, due to which it is possible to expand the LNG production network at the GDS at various input pressures, flow rates and the required degree of liquefaction of natural gas.
The paper studies the concept of monetization of the Shtokman gas condensate field in an unstable external environment, due to the sanctions policy and the redistribution of global world markets, including energy. It seems interesting in the current geopolitical situation to consider options for the development and monetization of the field, the construction of an LNG plant, as well as to analyze sales markets, risk analysis, assess the impact of the project on the nearby region and carry out an investment assessment of the project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.