SABRE (Sodium-iodide with Active Background REjection) is a direct dark matter search experiment based on an array of radio-pure NaI(Tl) crystals surrounded by a liquid scintillator veto. Twin SABRE experiments in the Northern and Southern Hemispheres will differentiate a dark matter signal from seasonal and local effects. The experiment is currently in a Proof-of-Principle (PoP) phase, whose goal is to demonstrate that the background rate is low enough to carry out an independent search for a dark matter signal, with sufficient sensitivity to confirm or refute the DAMA result during the following full-scale experimental phase. The impact of background radiation from the detector materials and the experimental site needs to be carefully investigated, including both intrinsic and cosmogenically activated radioactivity. Based on the best knowledge of the most relevant sources of background, we have performed a detailed Monte Carlo study evaluating the expected background in the dark matter search spectral region. The simulation model described in this paper guides the design of the full-scale experiment and will be fundamental for the interpretation of the measured background and hence for the extraction of a possible dark matter signal.
Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low $$^{39}$$ 39 K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of $$^{226}$$ 226 Ra and $$^{228}$$ 228 Th inside the crystal to be $$5.9\pm 0.6~\upmu $$ 5.9 ± 0.6 μ Bq/kg and $$1.6\pm 0.3~\upmu $$ 1.6 ± 0.3 μ Bq/kg, respectively, which would indicate a contamination from $$^{238}$$ 238 U and $$^{232}$$ 232 Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to $$^{210}$$ 210 Pb out of equilibrium and a $$\alpha $$ α quenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of $$\sim $$ ∼ 1 count/day/kg/keV in the [5–20] keV region.
We have performed measurements of sodium nuclear recoils in NaI:Tl crystals, following scattering by neutrons produced in a 7Li(p,n)7Be reaction. Understanding the light output from such recoils, which is reduced relative to electrons of equivalent energy by the quenching factor, is critical to interpret dark matter experiments that search for nuclear scattering interactions. We have developed a spectrum-fitting methodology to extract the quenching factor from our measurements, and report quenching factors for nuclear recoil energies between 36 and 401 keV. Our results agree with other recent quenching factor measurements that use quasi-monoenergetic neutron sources. The new method will be applied in the future to the NaI:Tl crystals used in the SABRE experiment.
The direct detection of dark matter is a key problem in astroparticle physics that generally requires the use of deep-underground laboratories for a low-background environment where the rare signals from dark matter interactions can be observed. This work reports on the Stawell Underground Physics Laboratory – currently under construction and the first such laboratory in the Southern Hemisphere – and the associated research program. A particular focus will be given to ANU’s contribution to SABRE, a NaI:Tl dark matter, direct detection experiment that aims to confirm or refute the long-standing DAMA result. Preliminary measurements of the NaI:Tl quenching factor and characterisation of the SABRE liquid scintillator veto are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.