Ophiolitic rocks distributed along the Yarlung Tsangpo suture zone in southern Tibet are the few remaining fragmentary remnants of many thousands of kilometres of the ocean space that formerly existed between India and Eurasia. Portions of mid-Jurassic and mid-Cretaceous intra-oceanic island arcs can be recognized amongst those rocks that have been studied in detail. Complete suprasubduction zone ophiolite successions are preserved in the Dazhuqu terrane, which crops out both east and west of Xigaze. Radiolarians in inter-pillow cherts and immediately overlying sedimentary rocks indicate a Barremian ophiolite generation event. Palaeomagnetic data show that this ophiolite formed at equatorial latitudes south of the Lhasa terrane before its south-directed emplacement onto the northern margin of India. Highly refractory ultramafic rocks in the Luobusa ophiolite appear to be of Mid-Jurassic age and are potentially related to intra-oceanic island arc remnants in the nearby Zedong terrane. Ophiolitic massifs along the suture in western Tibet are thrust southwards onto northern India and record Late Jurassic ocean-floor development. Miocene north-directed back-thrusting associated with India-Asia collision has further complicated interpretation of regional geology. The ophiolitic rocks of the Yarlung Tsangpo suture zone provide evidence for the former existence of multiple oceanic island arc segments within Neotethys and suggest that consumption of the oceanic space between India and Asia was more complicated than has been predicted by existing models.
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
A B S T R A C TDetailed field mapping combined with a petrologic and geochemical investigation of the Zedong terrane within the Yarlung Tsangpo suture zone provides insights to the evolution of now mostly subducted portions of Tethys during the Late Jurassic. The terrane is dominated by volcanic rocks of shoshonitic affinity, which were erupted in a submarine oceanic island arc setting. The volcanic island arc was built on a basement of oceanic crust, and the shoshonites locally overlie a thin section of pillowed island arc tholeiites and red ribbon-bedded radiolarian cherts. Geochemistry of the shoshonites suggests that their development occurred in a setting analogous to that of Late Miocene to Early Pliocene Fiji and was associated with an arc rifting. We speculate that this event may have been a far-field response to developments associated with Gondwana breakup.
Detailed investigations along the Yarlung Tsangpo suture zone, Tibet result in the following conclusions. (1) Arc, forearc, and subduction complex elements of at least one intra-oceanic island arc which once lay within Tethys and accreted to India prior to its collision with Asia are preserved within the suture. (2) Collisionrelated tectonic mélange is widespread. (3) Temporally distinct conglomeratic molasse units were developed; they are related to different collision events. (4) Improved radiolarian fossil data place constraints on timing of the development of intra-oceanic terranes and mélange formation. (5) A simple unconformable contact occurs between Upper Oligocene-Lower Miocene conglomerates and the southern Lhasa terrane; the socalled south-directed "Gangdese thrust" does not exist. These new results suggest the former existence of an intra-oceanic subduction system within Tethys and indicate that considerable revision of existing models for the evolution of the Yarlung Tsangpo suture zone is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.