With an ever-expanding demand for data storage, transducers, and microelectromechanical (MEMS) systems applications, materials with superior ferroelectric and piezoelectric responses are of great interest. The lead zirconate titanate (PZT) family of materials has served as the cornerstone for such applications up until now. A critical drawback of this material, however, is the presence of lead and the recent concerns about the toxicity of lead-containing devices. Recently, the lead-free ferroelectric BiFeO 3 (BFO) has attracted a great deal of attention because of its superior thin-film ferroelectric properties, [1,2] which are comparable to those of the tetragonal, Ti-rich PZT system; therefore, BFO provides an alternate choice as a "green" ferro/piezoelectric material. Another advantage of BFO is its high ferroelectric Curie temperature (T c = 850°C in single crystals), [3,4] which enables it to be used reliably at high temperatures. The ferroelectric domain structure of epitaxial BFO films are typically discussed in the context of the crystallographic model of Kubel and Schmid; [5] however, by suppressing other structural variants in BFO, we can obtain periodic domain structures that may open additional application opportunities for this material. Ferroelectrics with periodic domain structures are of great interest for applications in photonic devices [6] and nanolithography.[7] Such a periodic polarization could be obtained by applying an external electric field while utilizing lithographically defined electrodes or by a direct writing process. [8,9] To obtain sub-micrometer feature sizes, however, domain engineering using a scanning force microscope with an appropriate bias voltage must be used to fabricate the patterned domain structures.[10] Unfortunately, this method works only on small areas and is limited by its slow scanning rate. Theoretical models predict the feasibility of controlling the domain architecture in thin films through suitable control over the heteroepitaxial constraints. [11] In the case of BFO thin films, we have found that such a control is indeed possible, mainly through control over the growth of the underlying SrRuO 3 electrode. Using this approach, we demonstrate the growth of highly ordered 1D ferroelectric domains in 120 nm thick BFO films. On the (001) C perovskite surface there are eight possible ferroelectric polarization directions corresponding to four structural variants of the rhombohedral ferroelectric thin film. (For simplicity, the c and o subscripts refer to the pseudocubic structures for BFO and orthorhombic structures of SrRuO 3 (SRO) and DyScO 3 (110) O (DSO), respectively.) Domain patterns can develop with either {100} C or {101} C boundaries for (001) C -oriented rhombohedral films. [12] In both cases, the individual domains in the patterns are energetically degenerate and thus equal-width stripe patterns are theoretically predicted. When the spontaneous polarization is included in the analysis, the {100} C boundary patterns have no normal component of the net po...
Microstructural evolution as a function of substrate temperature (T S) for conducting ultrananocrystalline diamond (UNCD) films is systematically studied. Variation of the sp2 graphitic and sp3 diamond content with T S in the films is analysed from the Raman and near-edge x-ray absorption fine structure spectra. Morphological and microstructural studies confirm that at T S = 700 °C well-defined acicular structures evolve. These nanowire structures comprise sp3 phased diamond, encased in a sheath of sp2 bonded graphitic phase. T S causes a change in morphology and thereby the various properties of the films. For T S = 800 °C the acicular grain growth ceases, while that for T S = 700 °C ceases only upon termination of the deposition process. The grain-growth process for the unique needle-like granular structure is proposed such that the CN species invariably occupy the tip of the nanowire, promoting an anisotropic grain-growth process and the formation of acicular structure of the grains. The electron field emission studies substantiate that the films grown at T S = 700 °C are the most conducting, with conduction mediated through the graphitic phase present in the films.
We report the growth of ultrathin diamond nanorods (DNRs) by a microwave plasma assisted chemical vapor deposition method using a mixture gas of nitrogen and methane. DNRs have a diameter as thin as 2.1 nm, which is not only smaller than reported one-dimensional diamond nanostructures (4-300 nm) but also smaller than the theoretical value for energetically stable DNRs. The ultrathin DNR is encapsulated in tapered carbon nanotubes (CNTs) with an orientation relation of (111)diamond//(0002)graphite. Together with diamond nanoclusters and multilayer graphene nanowires/nano-onions, DNRs are self-assembled into isolated electron-emitting spherules and exhibit a low-threshold, high current-density (flat panel display threshold: 10 mA/cm2 at 2.9 V/microm) field emission performance, better than that of all other conventional (Mo and Si tips, etc.) and popular nanostructural (ZnO nanostructure and nanodiamond, etc.) field emitters except for oriented CNTs. The forming mechanism of DNRs is suggested based on a heterogeneous self-catalytic vapor-solid process. This novel DNRs-based integrated nanostructure has not only a theoretical significance but also has a potential for use as low-power cold cathodes.
Different peak trends of tiny grains carbon film have been observed under the investigations of the Raman spectroscopy and energy loss spectroscopy. Carbon films known in nanocrystalline and ultrananocrystalline diamond films are synthesized by employing microwave-based vapor deposition system. Carbon atoms exhibit several state behaviors depending on the incurred positions of their electrons. Different morphology of tiny grains under different chamber pressure is related to different rate of arriving typical energies at/near substrate surface. Those tiny grains of carbon film, which evolved in graphitic state atoms are converted to structure of smooth elements where elongation of atoms of one-dimensional arrays is as per exerting surface format forces along opposite poles from their centers. Such tiny grains in the film are the cause of v 1 peak under the investigation of the Raman spectrum because of the enhanced propagation of input laser signals through channelized inter-state electron gaps of elongated graphitic state atoms. Those tiny grains of carbon film, which evolved in fullerene state are the cause of v 2 peak. The tiny grains related to v 1 peak possess a low intensity as compared with the ones which comprised atoms having state behaviors known in their exceptional hardness. Tiny grains representing v 1 peakin the Raman spectrum are also the cause of field emission characteristic of a carbon film. Different peak recordings were made for the Raman at defined positions indicating a different state of carbon atoms for a different phase of deposited tiny grains, which is in line to their energy loss spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.