In this paper, we report an advance in increasing core size of effective single-mode chirally-coupled-core (CCC) Ge-doped and Yb-doped double-clad fibers into 55 µm to 60 µm range, and experimentally demonstrate their robust single-mode performance. Theoretical and numerical description of CCC fibers structures with multiple side cores and polygon-shaped central core is consistent with experimental results. Detailed experimental characterization of 55 µm-core CCC fibers based on spatially and spectrally resolved broadband measurements (S(2) technique) shows that modal performance of these large core fibers well exceeds that of standard 20 μm core step-index large mode area fibers.
We demonstrate a new technique of coherent pulse stacking (CPS) amplification to overcome limits on achievable pulse energies from optical amplifiers. CPS uses reflecting resonators without active cavity-dumpers to transform a sequence of phase- and amplitude-modulated optical pulses into a single output pulse. Experimental validation with a single reflecting resonator demonstrates a near-theoretical stacked peak-power enhancement factor of ~2.5 with 92% and 97.4% efficiency for amplified nanosecond and femtosecond pulses. We also show theoretically that large numbers of equal-amplitude pulses can be stacked using sequences of multiple reflecting resonators, thus providing a new path for generating very high-energy pulses from ultrashort pulse fiber amplifier systems.
A time-dependent analytical model is rigorously derived which shows that the thermally induced modal instability in high power rare-earth doped fiber amplifiers is fundamentally a two-wave mixing between fundamental and higher-order modes through a thermally-induced grating imprinted by beating between these modes. We show that previously postulated movement of this grating to phase-match the coupling between the modes naturally occurs due to a finite thermal-response time of a fiber. This theory is consistent with experimental observations in that it accurately predicts the onset-like threshold and temporal instabilities in the kilohertz-frequency range.
Both analytical study and numerical simulations show that the propagation-length independent Stimulated Raman Scattering (SRS) threshold can be achieved by Stokes wave suppression in optical fibers. We propose a specific design based on Chirally-Coupled-Core (CCC) fibers with spectrally-tailored wavelength-selective transmission to suppress the Stokes wave of Raman scattering. Fibers with length-independent nonlinearity threshold could be particularly advantageous for high power lasers and fiber beam delivery for material processing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.