We discuss a comprehensive design approach of Ti-Ni alloy coil springs and introduce a new application of the R-phase transformation. In order to attain high cyclic performance, one must understand the two relationships between design parameters and material characteristics and between material characteristics and cyclic performance. Metallurgical parameters and coil spring dimensions play an important role as design parameters in the former relationship. High cyclic performance of an actuator is closely related to the suppression of the monoclinic martensite. Transformation temperatures and their stress dependence is of primary importance as material characteristics in the latter relationship. A thermostatic mixing valve, which is the latest application of the R-phase transformation in Japan is then discussed as a new type of a shape memory alloy actuator. The R-phase transformation is employed to achieve not only a long cycle life but a linear operation with the set temperature to continuously control the mixing ratio of hot and cold water. This is achieved by changing the total length of the two-way actuator in a linear manner with the set temperature. The linear characteristic is satisfied between 35–50°C by optimizing thermomechanical treatment and the dimensions of Ti-Ni and biasing coil springs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.