We use in situ environmental measurements by the Mars Science Laboratory (MSL) mission to obtain the surface energy budget (SEB) across Curiosity's traverse during the first 2500 sols of the mission. This includes values of the downwelling shortwave solar radiation, the upwelling solar radiation reflected by the surface, the downwelling longwave radiation from the atmosphere, the upwelling longwave radiation emitted by the surface, the sensible heat flux associated with turbulent motions, and the latent heat flux associated with water phase changes. We then analyze their temporal variation on different timescales and relate this to the mechanisms causing these variations. Through its Rover Environmental Monitoring Station, MSL allows for a more accurate determination of the SEB than its predecessors on Mars. Moreover, the unprecedented duration, cadence, and frequency of MSL environmental observations allow for analyses of the SEB from diurnal to interannual timescales. The results presented in this article can be used to evaluate the consistency with predictions from atmospheric numerical models, to validate aerosol radiative properties under a range of dust conditions, to understand the energy available for solar-powered missions, and to enable comparisons with measurements of the SEB by the Perseverance rover at Jezero crater.Plain Language Summary The primary energy input at the Martian surface is the solar radiation, which depends on the time of the day and season, geographical location (latitude and altitude), and atmospheric dust and gas abundances. Another energy input is the thermal atmospheric forcing, which depends on the vertical distribution of dust and water ice aerosols as well as CO 2 and H 2 O molecules. Together with the reflected solar radiation and the thermal radiation emitted by the surface, these four terms make up the net radiative forcing of the surface. In response to it, energy outputs as turbulent motions and water phase changes emerge to cool down/warm up the ground. The remaining energy is available to control the thermal environment in the surface and shallow subsurface through conduction into the soil. By using first-of-their-kind measurements from the Mars Science Laboratory mission, we calculate the energy inputs and outputs across Curiosity's traverse over the first 2500 Martian days of the mission. We then analyze their temporal variations and relate this to the mechanisms causing such variations. An accurate determination of the surface energy budget is key to preparing for the human exploration of Mars because it contributes to improvements in the predictive capabilities of numerical models.MARTÍNEZ ET AL.
In situ measurements by the Curiosity rover provide a unique opportunity for studying the effects of dust on assets placed at the surface of Mars. Here we use in situ measurements of solar UV radiation to quantify the seasonal and interannual variability of dust accumulation on the sensor on the rover deck. We show that the amount of dust accumulated on the sensor follows a seasonal cycle, with net dust removal during the perihelion season until Ls ~ 300°, and net dust deposition until the end of the aphelion season (Ls ~ 300°–180°). We use independent in situ measurements of atmospheric opacity and pressure perturbations in combination with numerical modeling, showing that daytime convective vortices and nighttime winds are likely responsible for the seasonal dust cleaning, with the role of nighttime wind being more important in Martian Year (MY) 32 than in MY 33 and that of daytime convective vortices being more important in MY 33 than in MY 32. The fact that the UV sensor is cleaner in MY 33 than in MY 32 indicates that natural cleaning events make solar energy an excellent candidate to power extended (multiannual) Mars missions at similar latitudes as the Curiosity rover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.