Cassava is an important food and cash crop in Malawi. It is also becoming increasingly important for industrial use. The aim of this study was to investigate the native starch quality of different Malawi cassava genotypes. Trials were conducted at Chitedze and Makoka in Malawi in the 2000/01 season. Apart from root dry matter and starch extraction, starch quality parameters considered included protein, moisture and ash contents, pH and whiteness. Various stability measures were used to deal with the problem of genotype × environment interaction. The results showed that all the cassava genotypes produced starch with no protein and with colour as white as required by the industry. Moisture and ash contents and pH fell within the industry-recommended ranges. This suggests that native cassava starch is suitable for use in various industries. Additive main effects and multiplicative interaction (AMMI) was strongly correlated with other measured stability parameters and is therefore recommended for stability analysis of starch quality parameters. Genotype had a larger influence than environment on root dry matter. This agrees with the hypothesis that one or a few major genes control root dry matter in cassava.
Cassava varieties resistant to cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) are needed for the food and income security of the rural poor in eastern and southern Africa (ESA). The International Institute of Tropical Agriculture led five national cassava breeding programs (Malawi, Mozambique, Kenya, Tanzania and Uganda) in virus-cleaning and exchanging elite cassava germplasm resistant to both diseases. This paper documents the experiences and lessons learned from the process. Thirty-one clones (25 elite, two standard and four national) were submitted by the five breeding programs to the Natural Resources Institute and Kenya Plant Health Inspectorate Services for virus cleaning and indexing. Subsequently, ca 75 invitro virus-indexed plantlets per clone were sent to Genetic Technologies International Limited (GTIL), a private tissue culture (TC) lab in Kenya, and micro-propagated to produce ≥1500 plantlets. After fulfilling all the formal procedures of germplasm exchange between countries ≥300 plantlets per clone were sent to each partner country. National check clones susceptible to CMD/CBSD were sent only to their countries of origin. In each country, the in-vitro plantlets were acclimatized under screen house conditions and transferred to clean isolated sites for field multiplication. All the clones were cleaned of the viruses, except Tomo. The cleaning process was slow for F19-NL, NASE1, and Kibandameno and TC micro-propagation at GTIL was less efficient for Pwani, Tajirika, NASE1, and Okhumelela than for the other clones. Difficulties in cleaning recalcitrant clones affected the timeline for establishing the multi-site evaluation trials in target countries. The initiative is the one of the kind to successfully clean and exchange elite germplasm as a joint action to combat CBSD in ESA. Adequate preparation in terms of infrastructure and personnel are critical to successfully receiving and adapting the indexed in-vitro plants as new germplasm.
When cassava is harvested too early, it often leads to reduction in yield, while delayed harvest leads to development of woody and fibrous tuberous roots, and reduction in starch content. The optimum harvest time is not known. The objectives of this study were to determine the effect of genotype, location and season on starch extraction in order to find an optimum harvest regime for cassava, and to find the best parameter for monitoring starch levels in cassava tuberous roots. Results showed that genotypic effect was large for starch weight, starch extraction rate on fresh weight basis, and root dry matter content. This suggested that high starch weights could be realised by selection of suitable varieties for starch extraction. It was found that cassava harvesting and starch extractions should be done between October and November since the highest starch extraction rates were achieved during that period, and drying of the extracted starch using the open air method was fast and convenient. The results also suggested that starch levels can efficiently be monitored using starch extraction rate on fresh root weight basis. Starch content on fresh root basis and root dry matter content can also be used to determine the optimum time to harvest cassava for starch extraction but were inferior to starch extraction on fresh root weight basis.
Cassava brown streak disease is endemic to the coastal regions of East Africa and from around 2004 the disease resurged and became epidemic in the Great Lakes Region, where it continues to spread. In both these areas CBSD leaf symptoms occur at high incidences.However, it is the associated symptom of root rot (necrosis) in the starch-bearing tissues that renders the root unfit for human consumption. Because the extent of root necrosis is not known until the crop is harvested and surveys require destructive sampling, root symptoms are much less frequently assessed than are the above-ground symptoms on the leaves and stems. Surveys were undertaken in selected villages in Tanzania, Kenya, Uganda and Malawi to assess the incidence of CBSD leaf symptoms and the incidence and severity of root symptoms, in order to estimate the impact of the disease on household food security and on cassava processing. CBSD leaf symptoms were recorded at high incidences [40 -90% in individual fields] in all fields visited throughout East Africa but root necrosis incidence was lower than would be expected from the high incidence of leaf symptoms. Severe root necrosis at high incidence was found only on a few varieties, usually grown to a limited extent. It appears that varieties that are prone to root necrosis are being abandoned in favour of those with a lower propensity to develop root necrosis after infection by the virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.