In generalized inner product Sobolev spaces we investigate elliptic differential problems with additional unknown functions or distributions in boundary conditions. These spaces are parametrized with a function OR-varying at infinity. This characterizes the regularity of distributions more finely than the number parameter used for the Sobolev spaces. We prove that these problems induce Fredholm bounded operators on appropriate pairs of the above spaces. Investigating generalized solutions to the problems, we prove theorems on their regularity and a priori estimates in these spaces. As an application, we find new sufficient conditions under which components of these solutions have continuous classical derivatives of given orders. We assume that the orders of boundary differential operators may be equal to or greater than the order of the relevant elliptic equation.
We investigate elliptic boundary-value problems with additional unknown functions on the boundary of a Euclidean domain. These problems were introduced by Lawruk. We prove that the operator corresponding to such a problem is bounded and Fredholm on two-sided refined scales built on the base of the isotropic Hörmander inner product spaces. The regularity of the distributions forming these spaces are characterized by a real number and an arbitrary function that varies slowly at infinity in the sense of Karamata. For the generalized solutions to the problem, we prove theorems on a priori estimates and local regularity in these scales. As applications, we find new sufficient conditions under which the solutions have continuous classical derivatives of a prescribed order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.