In this paper, based on the behavior of Caenorhabditis elegans (C. elegans) in response to a toxic substance, we propose a novel biological monitoring method for the detection of water contamination. Both before and after the introduction of formaldehyde into the water at the concentration of 0.1 ppm, the swimming activities of C. elegans are continuously recorded by a charge coupled device camera at the rate of four frames per second. The behavior in each of the image frames is characterized by the branch length similarity (BLS) entropy profile. The shapes quantified by the BLS entropy profiles are classified into seven shape patterns via the self-organizing map combined with the k-means clustering algorithm. Subsequently, a monitoring scheme composed of two hidden Markov models decides the water quality based on the sequence of shape patterns over a certain observation time. The performance of the proposed method is generally affected by the observation interval; yet, experimental results show an accuracy of about 83% for an observation time of five minutes. It is also observed that, by taking the distribution of individual decisions into account, the accuracy of the proposed method can be improved up to 93% and the false negative rate can be reduced to 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.