No abstract
We present the first experimental measurement of temperature and density of a warm dense plasma produced by a pulsed power driver at the Nevada Terawatt Facility (NTF). In the early phases of discharge, most of the mass remains in the core, and it has been challenging to diagnose with traditional methods, e.g. optical probing, because of the high density and low temperature. Accurate knowledge of the transport coefficients as well as the thermodynamic state of the plasma is important to precisely test or develop theoretical models. Here, we have used spectrally resolved non-collective X-ray Thomson scattering to characterize the dense core region. We used a graphite load driven by the Zebra current generator (0.6 MA in 200 ns rise time) and the Ti He-α line produced by irradiating a Ti target with the Leopard laser (30 J, 0.8 ns) as an X-ray probing source. Using this configuration, we obtained a signal-to-noise ratio ~2.5 for the scattered signal. By fitting the experimental data with predicted spectra, we measured T = 2±1.9 eV, ρ = 0.6±0.5 gr/cc, 70 ns into the current pulse. The complexity of the dense core is revealed by the electrons in the dense core that are found to be degenerate and weakly coupled, while the ions remain highly coupled.
In this paper we report on the ability of a compact current driver yielding 250 kA in 150 ns to produce counter-propagating plasma flows. The flows were produced by two vertically-opposed conical wire arrays separated by 1 cm, each comprised of 8 wires. With this array configuration, we were able to produce two supersonic plasma jets with velocities on the order of 100-200 km/s that propagate towards each other and collide. Aluminum wires were tested first; we observed a shock wave forming at the collision region that remained stationary for an extended period of time (~ 50 ns) using optical probing diagnostics and Extreme Ultraviolet imaging. After this period, a bow shock is formed that propagates at 20 km/s towards the cathode of the array, likely due to small differences in the density and/or speed of the jets. The inter-jet ion mean free path was estimated to be larger than the shock scale length for aluminum, indicating that the shock is not mediated by collisions, but possibly by a magnetic field, whose potential sources are also discussed. Radiative cooling and density contrast between the jets were found to be important in the shock wave dynamics. We studied the importance of these effects by colliding jets of two different materials, using aluminum in one and copper in the other. In this configuration, the bow shock was observed to collapse into a thin shell and then to fragment, forming clumpy features. Simultaneously, the tip of the bow shock is seen to narrow as the bow shock moves at a similar speed observed in the Al-Al case. We discuss the similarity criteria for scaling astrophysical objects to the laboratory, finding that the dimensionless numbers are promising.
We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.