The magnetization dynamics of ε-Fe2O3 nanoparticles with an average size of about 9 nm is investigated. From comparison of the hysteresis loops obtained in quasi-static conditions and under pulse fields with amplitudes up to 200 kOe and pulse lengths 8–32 ms, it follows that the effective coercivity increases considerably with the variation rate of the imposed magnetic field. A theoretical explanation of this behavior is proposed. The model takes into account the superparamagnetic effects as well as the fact that magnetic anisotropy of the nanoparticles, along with the bulk term, includes a surface contribution. The latter, being of minor importance for the observed magnetic behavior of 25–100 nm particles, becomes essential when the particle size is below 10 nm. From the experimental data, a reference value of the surface anisotropy of nanodisperse ε-Fe2O3 is established, and evidence is presented to the effect that below 300 K this contribution does not significantly depend on temperature.
Dynamic magnetic hysteresis in uniaxial superparamagnetic nanoparticles in superimposed ac and dc magnetic fields of arbitrary amplitude is considered using Brown’s model of coherent rotation of the magnetization. The dependence of the area of the dynamic hysteresis loop on the temperature, frequency, and ac and dc bias fields is analyzed. In particular, the dynamic hysteresis loop of a single-domain ferromagnetic particle is substantially altered by applying a relatively weak dc field. Furthermore, it is shown that at intermediate to low ac field amplitudes, the dc bias field permits tuning of the magnetic power absorption of the particles, while for strong ac field amplitudes the effect becomes entirely analogous to that produced by the exchange biased anisotropy. Simple analytical formulas are provided in the linear response regime for the steady-state magnetization and loop area, exhibiting perfect agreement with the numerical solution of Brown’s Fokker–Planck equation. Comparison with previous results is also given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.