Convolutional neural networks are able to perform a hierarchical learning process starting with local features. However, a limited attention is paid to enhancing such elementary level features like edges. We propose and evaluate two wavelet-based edge feature enhancement methods to preprocess the input images to convolutional neural networks. The first method develops feature enhanced representations by decomposing the input images using wavelet transform and limited reconstructing subsequently. The second method develops such feature enhanced inputs to the network using local modulus maxima of wavelet coefficients. For each method, we have developed a new preprocessing layer by implementing each purposed method and have appended to the network architecture. Our empirical evaluations demonstrate that the proposed methods are outperforming the baselines and previously published work with significant accuracy gains.
Despite the remarkable success of deep learning in pattern recognition, deep network models face the problem of training a large number of parameters. In this paper, we propose and evaluate a novel multi-path wavelet neural network architecture for image classification with far less number of trainable parameters. The model architecture consists of a multi-path layout with several levels of wavelet decompositions performed in parallel followed by fully connected layers. These decomposition operations comprise wavelet neurons with learnable parameters, which are updated during the training phase using the back-propagation algorithm. We evaluate the performance of the introduced network using common image datasets without data augmentation except for SVHN and compare the results with influential deep learning models. Our findings support the possibility of reducing the number of parameters significantly in deep neural networks without compromising its accuracy.
Malaria is a global public health concern and its dynamic transmission is still a complex process. Malaria transmission largely depends on various factors, including demography, geography, vector dynamics, parasite reservoir, and climate. The dynamic behaviour of malaria transmission has been explained using various statistical and mathematical methods. Of them, wavelet analysis is a powerful mathematical technique used in analysing rapidly changing time-series to understand disease processes in a more holistic way. The current study is aimed at identifying the pattern of malaria transmission and its variability with environmental factors in Kataragama, a malaria-endemic dry zone locality of Sri Lanka, using a wavelet approach. Monthly environmental data including total rainfall and mean water flow of the "Menik Ganga" river; mean temperature, mean minimum and maximum temperatures and mean relative humidity; and malaria cases in the Kataragama Medical Officer of Health (MOH) area were obtained from the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.