Growing concern over emissions from increased airport operations has resulted in a need to assess the impact of aviation related activities on local air quality in and around airports, and to develop strategies to mitigate these effects. One such strategy being investigated is the use of alternative fuels in aircraft engines and auxiliary power units (APUs) as a means to diversify fuel supplies and reduce emissions. This paper summarizes the results of a study to characterize the emissions of an APU, a small gas turbine engine, burning conventional Jet A-1, a fully synthetic jet fuel, and other alternative fuels with varying compositions. Gas phase emissions were measured at the engine exit plane while PM emissions were recorded at the exit plane as well as 10 m downstream of the engine. Five percent reduction in NO(x) emissions and 5-10% reduction in CO emissions were observed for the alternative fuels. Significant reductions in PM emissions at the engine exit plane were achieved with the alternative fuels. However, as the exhaust plume expanded and cooled, organic species were found to condense on the PM. This increase in organic PM elevated the PM mass but had little impact on PM number.
Almost all current civil and military aviation around the world use a kerosene-type fuel. However one of the alternatives is to use a mixture of petrochemicals and biofuel, especially methyl esters derived from vegetable oil (Fatty Acid Methyl Esters, FAMEs) that given their properties appear to be one of the most suitable for Aviation fuels. Studies were conducted to develop a fundamental and detailed reaction mechanism for the combustion of bio-aviation fuel through a combination of the existing kerosene based reaction mechanism developed previously by the authors (Aviation Fuel Reaction Mechanism v1.1), along with published chemical kinetic mechanisms for methylbutanoate (MB). Methylbutanoate is the simplest FAME that exhibits similar patterns of reactivity to FAME’s of longer carbon chain length typical of those derived from vegetable oils, furthermore it has been the subject of several studies to provide chemical kinetic mechanisms to predict its oxidation behavior. Evaluations of the combined reaction mechanism have been performed using CHEMKIN™ and similar software simulating high temperature/pressure conditions. A comparison between the oxidation processes of the Kerosene and Bio-Aviation fuel was carried out, along with sensitivity analysis to provide insight into some of the differences observed. A similar behaviour was observed for blends of 20%MB/80%Kerosene in the combustion conditions studied, indicating that combustion in current aircraft engines would not be adversely affected by using such a blend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.