The effect of a low-frequency alternating magnetic field on the properties of E. coli bacterial cells in an aqueous medium have been studied in vitro. The experiments were performed with a daily grown culture of E. coli HB-101 cells obtained in a liquid LB medium. The samples were prepared by means of turbidity-controlled serial dilutions and then grown on a bactoagar. It is established that E. coli colonies grown upon exposure of a monolayer of cells in the alternating magnetic field had a smaller average diameter than the colonies not treated in the field. The number of cell colonies was increased, which indicated that the treatment of E. coli cells in a low-frequency magnetic field produced stimulation of the cell growth.
Microencapsulation and targeted delivery of cytotoxic and antibacterial agents of photodynamic therapy (PDT) improve the treatment outcomes for infectious diseases and cancer. In many cases, the loss of activity, poor encapsulation efficiency, and inadequate drug dosing hamper the success of this strategy. Therefore, the development of novel and reliable microencapsulated drug formulations granting high efficacy is of paramount importance. Here we report the in vitro delivery of a water-soluble cationic PDT drug, zinc phthalocyanine choline derivative (Cholosens), by biodegradable microcapsules assembled from dextran sulfate (DS) and poly-l-arginine (PArg). A photosensitizer was loaded in pre-formed [DS/PArg]4 hollow microcapsules with or without exposure to heat. Loading efficacy and drug release were quantitatively studied depending on the capsule concentration to emphasize the interactions between the DS/PArg multilayer network and Cholosens. The loading data were used to determine the dosage for heated and intact capsules to measure their PDT activity in vitro. The capsules were tested using human cervical adenocarcinoma (HeLa) and normal human dermal fibroblast (NHDF) cell lines, and two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Our results provide compelling evidence that encapsulated forms of Cholosens are efficient as PDT drugs for both eukaryotic cells and bacteria at specified capsule-to-cell ratios.
Bacterial contamination of experimental purulent wound in rats treated by local applications of suspension of copper and zinc nanoparticles and a combined drug based on chitosan and copper and zinc nanoparticles was evaluated. Applications of copper nanoparticle suspension and combined drug with copper and zinc nanoparticles and chitosan led to rapid elimination of the bacterial contaminant. Antibacterial activity of zinc nanoparticles was less pronounced, but the effect also differed significantly from the reference group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.