A high-resolution laboratory reflectometer designed for operation in the soft x-ray (SXR) and extreme ultraviolet (EUV) ranges is described. High spectral resolution, up to 0.028 nm, in a wide spectral range is achieved due to the Czerny–Turner monochromator. A laser plasma generated by irradiating a solid-state target with a focused laser beam (wavelength 1.06 µm, pulse energy 0.5 J, duration 4 ns, and pulse repetition rate 10 Hz) is used as a source of SXR and EUV radiation. The goniometer allows the study of curved optical elements with an aperture up to NA = 0.5 and a diameter of up to 500 mm. The methods providing high efficiency of the optical system and spectral resolution in a wide range of wavelengths are described in detail. The problem of taking into account high orders in the recorded spectra of a laser plasma is discussed. A comparison of the measurement results with the described reflectometer and the optics beamline at the BESSY-II synchrotron is given.
Problems in the application of a null lens for surface shape measurements of aspherical mirrors are discussed using the example of manufacturing an aspherical concave mirror for the beyond extreme ultraviolet nanolithographer. A method for allowing measurement of the surface shape of a sample under study and the aberration of a null lens simultaneously, and for evaluating measurement accuracy, is described. Using this method, we made a mirror with an aspheric surface of the 6th order (i.e., the maximum deviation from the best-fit sphere is 6.6 μm) with the parameters of the deviations from the designed surface PV=5.3 nm and RMS=0.8 nm. An approximation of the surface shape was carried out using Zernike polynomials {Z(n)(m)(r,φ),m+n≤36}. The physical limitations of this technique are analyzed. It is shown that for aspheric measurements to an Angstrom accuracy, one needs to have a null lens with errors of less than 1 nm. For accurate measurements, it is necessary to establish compliance with the coordinates on the sample and on the interferogram.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.