The implementation of intelligent technologies in industrial horticulture is possible with the help of an automated system for managing production processes. (Research purpose) To develop and substantiate the parameters of an automated management system for agricultural technologies in horticulture with the ability to conduct land inspections using a mobile application. (Materials and methods) ADO.NET driver Npqsql was used for work with the database. Dapper was used as Object Relational Mapping. The web application used the Model View Controller design pattern, and Bootstrap as the css framework. Data visualization from the database was carried out using cloud technology, placing the site using a set of Internet Information Services. Jquery (a set of JavaScript functions) served as the main framework for working with the client-side of the program code. The authors also used the PostgreSql database management system. The mobile application was created in the Android studio integrated environment. (Results and discussion) The authors developed an automated system for managing agricultural technologies. They formed the structure of the hardware and software base. They created the system ability to operate in a dialogue mode with the user through forms, based on the algorithm for choosing the optimal options for technological processes in the horticultural products production. A mobile application was implemented to conduct digital land inspections. They determined the procedure for conducting land inspections by agronomists using a mobile application. (Conclusions) The authors developed a system for the automated technologies formation and management in horticulture, which provided operational processing of information flows in real time, reflecting the characteristics of the plants’ growth and state in critical phases of development. They provided modern recording devices and a mobile application operation. They showed that the system automatically optimized machine technologies for the cultivation of horticultural crops according to biological (realization of the potential biological productivity of crops) and economic (increasing the efficiency of using production resources) criteria.
The article reviews the creation and implementation of farm management system of fruit and berry production. The objectives of the developing system and the types of collecting data are determined. Based on this, the optimal system architecture is designed. The stages of system implementation are also defined.
В последнее время помимо традиционных методов сплошного или выборочного осмотра посевов применяют инструментальные средства мониторинга, в частности видео-и фотокамеры, установленные на беспилотных летательных аппаратах (БПЛА). Основные преимущества использования комплексов мониторинга на основе БПЛАотсутствие механического воздействия на посевы и высокая производительность при проведении съемок. Однако в ходе сплошного контроля больших площадей посевов (десятки тысяч гектаров), особенно на ранних стадиях их вегетации, возникает проблема оперативного получения результатов анализа съемок. Отметили, что для ее решения целесообразно разработать автоматизированные методы выявления проблемных зон и их геопривязки. Определили, что для подсчета количества всходов и расстояния между ними необходимо применять методы распознавания изображений, основанные на анализе спектральных характеристик растений. Выявили, что методика выделения сигналов от растений основана на сравнении измеренных значений с заданными, после чего проводится построение рядов с использованием алгоритма аппроксимации кусочно-линейной функции. На основе полученной информации рассчитали статистические показатели, характеризующие качество выполнения работ. Провели экспериментальные исследования по отработке методики комплекса аппаратно-программных средств на посевах кукурузы в Краснодарском крае. Дали сравнительную оценку замера в ручном и автоматическом режиме с помощью разработанного программного обеспечения для распознавания и подсчетов всходов. Разница в результатах составляет 3-5 процентов. Ключевые слова: посевы, дистанционный мониторинг, распознавание изображений, аппаратно-программные средства.
Summary: the article proposes new software platform for automating the processes of preprocessing and marking up datasets with the aim of further solving analytical problems such as image classification and processing textual and parametric information using neural network technologies. The software platform uses modern technologies and combines a large number of methods in the form of a modular platform, which can be supplemented as the tasks of analytical data processing become more complicated. The need to develop such a software platform is dictated primarily by the fact that, given the current level of data volume growth, the actual transition to deep data analytics remains unattainable without such software platforms, since confidentiality, access to information and the use of external data processing resources are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.