Dent disease, an X-linked familial renal tubular disorder, is a form of Fanconi syndrome associated with proteinuria, hypercalciuria, nephrocalcinosis, kidney stones, and eventual renal failure. We have previously used positional cloning to identify the 3' part of a novel kidney-specific gene (initially termed hClC-K2, but now referred to as CLCN5), which is deleted in patients from one pedigree segregating Dent disease. Mutations that disrupt this gene have been identified in other patients with this disorder. Here we describe the isolation and characterization of the complete open reading frame of the human CLCN5 gene, which is predicted to encode a protein of 746 amino acids, with significant homology to all known members of the ClC family of voltage-gated chloride channels. CLCN5 belongs to a distinct branch of this family, which also includes the recently identified genes CLCN3 and CLCN4. We have shown that the coding region of CLCN5 is organized into 12 exons, spanning 25-30 kb of genomic DNA, and have determined the sequence of each exon-intron boundary. The elucidation of the coding sequence and exon-intron organization of CLCN5 will both expedite the evaluation of structure/function relationships of these ion channels and facilitate the screening of other patients with renal tubular dysfunction for mutations at this locus.
We present a novel RT-PCR-based approach for determining the inactivation status of X-linked genes. Using cDNA from cloned female cell lines in which only the maternal or paternally derived X chromosome is active, we are able to demonstrate expression from only one allele in genes known to be inactivated. Following reverse transcription, amplification across a polymorphism will yield a product from a single allele if the gene of interest is inactivated, and products from both alleles in a gene escaping inactivation. We have verified this approach using the human androgen receptor and FMR1 loci which have been shown to be subjected to normal inactivation. The potential for widespread application of this approach was shown by the successful demonstration of inactivation at the MAOA and HPRT loci using intronic polymorphisms.
Mutations in the TSC2 gene on chromosome 16p13.3 are responsible for approximately 50% of familial tuberous sclerosis (TSC). The gene has 41 small exons spanning 45 kb of genomic DNA and encoding a 5.5 kb mRNA. Large germline deletions of TSC2 occur in <5% of cases, and a number of small intragenic mutations have been described. We analysed mRNA from 18 unrelated cases of TSC for TSC2 mutations using the protein truncation test (PTT). Three cases were predicted to be TSC2 mutations on the basis of linkage analysis or because a hamartoma from the patient showed loss of heterozygosity for 16p13.3 markers. Three overlapping PCR products, covering the complete coding sequence of mRNA, were generated from lymphoblastoid cell lines, translated into 35S-methionine labelled protein, and analysed by SDS-PAGE. PCR products showing PTT shifts were directly sequenced, and mutations confirmed by restriction enzyme digestion where possible. Six PTT shifts were identified. Five of these were caused by mutations predicted to produce a truncated protein: (i) a sporadic case showed a 32 bp deletion in exon 11, and a mutant mRNA without exon 11 was produced; the normal exon 10 was also spliced out; (ii) a sporadic case had a 1 bp deletion in exon 12 (1634delT); (iii) a TSC2-linked mother and daughter pair had a G-->T transversion in exon 23 (G2715T) introducing a cryptic splice site causing a 29 bp truncation of mRNA from exon 23; (iv) a sporadic case showed a 2 bp deletion in exon 36; (v) a sporadic case showed a 1 bp insertion disrupting the donor splice site of exon 37 (5007+2insA), resulting in the use of an upstream exonic cryptic splice site to cause a 29 bp truncation of mRNA from exon 37. In one case, the PTT shift was explained by in-frame splicing out of exon 10, in the presence of a normal exon 10 genomic sequence. Alternative splicing of exon 10 of the TSC2 gene may be a normal variant. Three 3rd base substitution polymorphisms were also detected during direct sequencing of PCR products. Confirmed mutations were identified in 28% of the families studied and on the assumption that half of the sporadic cases should have TSC2 mutations, a crude estimate of the detection rate would be 60%. This compares favourably with other screening methods used for TSC2, notably SSCP, and since PTT involves much less work it may be the method of choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.