Observations show various jets in the solar atmosphere with significant rotational motions, which may undergo instabilities leading to heat ambient plasma. We study the Kelvin-Helmholtz (KH) instability of twisted and rotating jets caused by the velocity jumps near the jet surface. We derive a dispersion equation with appropriate boundary condition for total pressure (including centrifugal force of tube rotation), which governs the dynamics of incompressible jets. Then, we obtain analytical instability criteria of Kelvin-Helmholtz instability in various cases, which were verified by numerical solutions to the dispersion equation. We find that twisted and rotating jets are unstable to KH instability when the kinetic energy of rotation is more than the magnetic energy of the twist. Our analysis shows that the azimuthal magnetic field of 1-5 G can stabilize observed rotations in spicule/macrospicules and X-ray/EUV jets. On the other hand, non-twisted jets are always unstable to KH instability. In this case, the instability growth time is several seconds for spicule/macrospicules and few minutes (or less) for EUV/X-ray jets. We also find that standing kink and torsional Alfvén waves are always unstable near the antinodes due to the jump of azimuthal velocity at the surface, while the propagating waves are generally stable. KH vortices may lead to enhanced turbulence development and heating of surrounding plasma, therefore rotating jets may provide energy for chromospheric and coronal heating.
Background Debate about the level of asymptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection continues. The amount of evidence is increasing and study designs have changed over time. We updated a living systematic review to address 3 questions: (1) Among people who become infected with SARS-CoV-2, what proportion does not experience symptoms at all during their infection? (2) What is the infectiousness of asymptomatic and presymptomatic, compared with symptomatic, SARS-CoV-2 infection? (3) What proportion of SARS-CoV-2 transmission in a population is accounted for by people who are asymptomatic or presymptomatic? Methods and findings The protocol was first published on 1 April 2020 and last updated on 18 June 2021. We searched PubMed, Embase, bioRxiv, and medRxiv, aggregated in a database of SARS-CoV-2 literature, most recently on 6 July 2021. Studies of people with PCR-diagnosed SARS-CoV-2, which documented symptom status at the beginning and end of follow-up, or mathematical modelling studies were included. Studies restricted to people already diagnosed, of single individuals or families, or without sufficient follow-up were excluded. One reviewer extracted data and a second verified the extraction, with disagreement resolved by discussion or a third reviewer. Risk of bias in empirical studies was assessed with a bespoke checklist and modelling studies with a published checklist. All data syntheses were done using random effects models. Review question (1): We included 130 studies. Heterogeneity was high so we did not estimate a mean proportion of asymptomatic infections overall (interquartile range (IQR) 14% to 50%, prediction interval 2% to 90%), or in 84 studies based on screening of defined populations (IQR 20% to 65%, prediction interval 4% to 94%). In 46 studies based on contact or outbreak investigations, the summary proportion asymptomatic was 19% (95% confidence interval (CI) 15% to 25%, prediction interval 2% to 70%). (2) The secondary attack rate in contacts of people with asymptomatic infection compared with symptomatic infection was 0.32 (95% CI 0.16 to 0.64, prediction interval 0.11 to 0.95, 8 studies). (3) In 13 modelling studies fit to data, the proportion of all SARS-CoV-2 transmission from presymptomatic individuals was higher than from asymptomatic individuals. Limitations of the evidence include high heterogeneity and high risks of selection and information bias in studies that were not designed to measure persistently asymptomatic infection, and limited information about variants of concern or in people who have been vaccinated. Conclusions Based on studies published up to July 2021, most SARS-CoV-2 infections were not persistently asymptomatic, and asymptomatic infections were less infectious than symptomatic infections. Summary estimates from meta-analysis may be misleading when variability between studies is extreme and prediction intervals should be presented. Future studies should determine the asymptomatic proportion of SARS-CoV-2 infections caused by variants of concern and in people with immunity following vaccination or previous infection. Without prospective longitudinal studies with methods that minimise selection and measurement biases, further updates with the study types included in this living systematic review are unlikely to be able to provide a reliable summary estimate of the proportion of asymptomatic infections caused by SARS-CoV-2. Review protocol Open Science Framework (https://osf.io/9ewys/)
Context. Tangential velocity discontinuity near the boundaries of solar wind magnetic flux tubes results in Kelvin-Helmholtz instability, which might contribute to solar wind turbulence. While the axial magnetic field stabilizes the instability, a small twist in the magnetic field may allow sub-Alfvénic motions to be unstable. Aims. We aim to study the Kelvin-Helmholtz instability of twisted magnetic flux tubes in the solar wind with different configurations of the external magnetic field. Methods. We use magnetohydrodynamic equations in cylindrical geometry and derive the dispersion equations governing the dynamics of twisted magnetic flux tubes moving along its axis in the cases of untwisted and twisted external fields. Then, we solve the dispersion equations analytically and numerically and find thresholds for Kelvin-Helmholtz instability in both cases of the external field.Results. Both analytical and numerical solutions show that the Kelvin-Helmholtz instability is suppressed in the twisted tube by the external axial magnetic field for sub-Alfvénic motions. However, even a small twist in the external magnetic field allows the Kelvin-Helmholtz instability to be developed for any sub-Alfvénic motion. The unstable harmonics correspond to vortices with high azimuthal mode numbers that are carried by the flow. Conclusions. Twisted magnetic flux tubes can be unstable to Kelvin-Helmholtz instability when they move with small speed relative to the main solar wind stream, then the Kelvin-Helmholtz vortices may significantly contribute to the solar wind turbulence.
We present the basic equations for modeling a plasma column produced and sustained by a traveling electromagnetic wave in the presence of a constant external magnetic field. The model consists of two equations -a local-dispersion relationship and a wave-energy-balance equation -and a relation between the absorbed wave power per unit length averaged across the column (proportional to the squared-wave electric field) and the local electron number density. The dispersion relation and the balance equation are derived in explicit forms and depend on two numerical parameters o. =coR /c (co being the wave angular frequency, R the plasma column radius, c speed of light) and A=co, /co (co, is the electron cyclotron frequency). The limit of an infinite external magnetic field (Q~~) is also considered. The inhuence of the two parameters 0 and cr on the dimensionless axial profiles of the wave characteristics and plasma column density, obtained by numerical solution of the basic equations, has been studied for two different gas-discharge regimes. A three-dimensional wave structure has been obtained, and it is shown that the wave can be a generalized surface mode, a pure surface, or a pseudosurface one. The results obtained are in agreement with the available experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.