One of the most robust signals of climate change is the relentless rise in global mean surface temperature, which is linked closely with the water-holding capacity of the atmosphere. A more humid atmosphere will lead to enhanced moisture transport due to, among other factors, an intensification of atmospheric rivers (ARs) activity, which are an important mechanism of moisture advection from subtropical to extra-tropical regions. Here we show an enhanced evapotranspiration rates in association with landfalling atmospheric river events. These anomalous moisture uptake (AMU) locations are identified on a global scale. The interannual variability of AMU displays a significant increase over the period 1980-2017, close to the Clausius-Clapeyron (CC) scaling, at 7 % per degree of surface temperature rise. These findings are consistent with an intensification of AR predicted by future projections. Our results also reveal generalized significant increases in AMU at the regional scale and an asymmetric supply of oceanic moisture, in which the maximum values are located over the region known as the Western Hemisphere Warm Pool (WHWP) centred on the Gulf of Mexico and the Caribbean Sea.
A Lagrangian analysis is applied to identify the main moisture source areas associated with atmospheric rivers (ARs) making landfall along the west coast of South Africa during the extended austral winter months from 1980 to 2014. The results show that areas that provide the anomalous uptake of moisture can be categorized into four regions: (1) the South Atlantic Ocean between 10°S and 30°S, (2) a clear local maximum in the eastern South Atlantic, (3) a continental source of anomalous uptake to the north of the Western Cape, and (4) over South America at a distance of more than 7000 km from the target region. It emerges that the South American moisture source can be linked to a particular phase of the South American low‐level jet, known as a no Chaco jet event (NCJE), which transports moisture to the western and central South Atlantic basin. Concisely, we provide strong evidence that the two margins of the South Atlantic Ocean appear connected by two meteorological structures, with the NCJE playing a key role of transporting moisture from South America to the western and central South Atlantic basin, feeding the AR that transports some of the moisture to the west coast of South Africa.
Abstract. Low-level jets (LLJs) can be defined as wind corridors of anomalously high
wind speed values located within the first kilometre of the troposphere.
These structures are one of the major meteorological systems in the
meridional transport of moisture on a global scale. In this work, we focus on
the southerly Great Plains low-level jet, which plays an important role in
the moisture transport balance over the central United States. The Gulf of
Mexico is the main moisture source for the Great Plains low-level jet
(GPLLJ), which has been identified as a key factor for rainfall modulation
over the eastern and central US. The relationship between moisture transport from the Gulf of Mexico to the
Great Plains and precipitation has been well documented in previous studies.
Nevertheless, a large uncertainty still remains in the quantification of the
moisture amount actually carried by the GPLLJ. The main goal of this work is
to address this question. For this purpose, a relatively new tool, the
regional atmospheric Weather Research and Forecasting Model with 3-D water
vapour tracers (WRF-WVT; Insua-Costa and Miguez-Macho, 2018) is used together
with the Lagrangian model FLEXPART to estimate the load of precipitable water
advected within the GPLLJ. Both models were fed with data from ERA Interim. From a climatology of jet intensity
over a 37-year period, which follows a Gaussian distribution, we select five
cases for study, representing the mean and 1 and 2 standard deviations above
and below it. Results show that the jet is responsible for roughly
70 %–80 % of the moisture transport occurring in the southern Great
Plains when a jet event occurs. Furthermore, moisture transport by the GPLLJ
extends to the north-east US, accounting for 50 % of the total in areas
near the Great Lakes. Vertical distributions show the maximum of moisture
advected by the GPLLJ at surface levels and maximum values of moisture flux
about 500 m above, in coincidence with the wind speed profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.