We summarise important recent advances in quantum metrology, in connection to experiments in cold gases, trapped cold atoms and photons. First we review simple metrological setups, such as quantum metrology with spin squeezed states, with Greenberger-Horne-Zeilinger states, Dicke states and singlet states. We calculate the highest precision achievable in these schemes. Then, we present the fundamental notions of quantum metrology, such as shot-noise scaling, Heisenberg scaling, the quantum Fisher information and the Cramér-Rao bound. Using these, we demonstrate that entanglement is needed to surpass the shot-noise scaling in very general metrological tasks with a linear interferometer. We discuss some applications of the quantum Fisher information, such as how it can be used to obtain a criterion for a quantum state to be a macroscopic superposition. We show how it is related to the the speed of a quantum evolution, and how it appears in the theory of the quantum Zeno effect. Finally, we explain how uncorrelated noise limits the highest achievable precision in very general metrological tasks.
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
A complete set of generalized spin-squeezing inequalities is derived for an ensemble of particles with an arbitrary spin. Our conditions are formulated with the first and second moments of the collective angular momentum coordinates. A method for mapping the spin-squeezing inequalities for spin-1 2 particles to entanglement conditions for spin-j particles is also presented. We apply our mapping to obtain a generalization of the original spin-squeezing inequality to higher spins. We show that, for large particle numbers, a spin-squeezing parameter for entanglement detection based on one of our inequalities is strictly stronger than the original spin-squeezing parameter defined in [A. Sørensen et al., Nature 409, 63 (2001)]. We present a coordinate system independent form of our inequalities that contains, besides the correlation and covariance tensors of the collective angular momentum operators, the nematic tensor appearing in the theory of spin nematics. Finally, we discuss how to measure the quantities appearing in our inequalities in experiments.
We present a method to verify the metrological usefulness of noisy Dicke states of a particle ensemble with only a few collective measurements, without the need for a direct measurement of the sensitivity. Our method determines the usefulness of the state for the usual protocol for estimating the angle of rotation with Dicke states, which is based on the measurement of the second moment of a total spin component. It can also be used to detect entangled states that are useful for quantum metrology. We apply our method to recent experimental results.| 〉 For this purpose, we will summarize the expectation values of the relevant moments of some collective observables for the state. Our Dicke state is an eigenstate of J z with an eigenvalue zero. Hence, it immediately follows thatMoreover we know that for every quantum stateNext, we will substitute the experimentally measured values to (36). The measured data from [49] for N = 7900 yields J J J J 112 31,
We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.