The present work investigates the destruction of nitrogencontaining heterocyclic hydrocarbons frequently encountered in hazardous wastes by supercritical water oxidation (SCWO), with focus on the process enhancement using isopropyl alcohol (IPA) as co-fuel. 1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU) was selected for SCWO in a continuous plug flow reactor, under a range of temperatures (400-525 °C), oxidant ratios nSR (0.8-2.0) and IPA/DBU ratios (0.5-3.5). Experimental results were presented in terms of total organic carbon (TOC) removal %, and nitrogenous products yield %. Based on GC-MS analysis, a free radical reaction mechanism for SCWO of DBU was proposed. Results showed that temperature was the predominant factor to influence the rate of DBU oxidation, while oxidant ratio (nSR) significantly affected the N speciation in the exit stream. IPA addition had a * Corresponding Author 2 significant impact on shifting recalcitrant aqueous ammonia NH 4 + in the liquid stream to gaseous nitrogen. It also increased TOC removal % (DBU + IPA) due to the increased free radicals produced by IPA oxidation.
Supercritical water oxidation (SCWO) is an advanced process mainly employed for the treatment of hazardous stable wastes, otherwise treatable by incineration. It is based on the unique properties of water above its critical point (T(c)=675 K, P(c)=22.2 MPa), making it a superior reaction medium for the destruction of all organics in the presence of oxygen. This work presents preliminary laboratory scale studies on SCWO of nitrogen (N)-containing hazardous hydrocarbons, with a view to enhancing the process performance, using available reagents and non-complex reactor design. This article investigates the destruction of dimethylformamide (DMF), carried out in a continuous (plug flow) reactor system. SCWO of DMF was enhanced by (i) a split-oxidant system, where stoichiometric oxidant was divided between two inlet ports at various ratios and (ii) the addition of isopropyl alcohol (IPA) as a co-fuel, premixed with the feedstock. Testing a range of temperatures, initial DMF concentrations, oxidant ratios, IPA ratios and oxidant split ratios, selected results were presented in terms of % total organic carbon and % N removal. Reaction kinetics were studied and showed a dramatic decrease in the activation energy upon adding IPA. Split-oxidant-feeding enhancement depended on the split ratio and secondary feed position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.