[1] The new Horizontal Wind Model (HWM07) provides a statistical representation of the horizontal wind fields of the Earth's atmosphere from the ground to the exosphere (0-500 km). It represents over 50 years of satellite, rocket, and ground-based wind measurements via a compact Fortran 90 subroutine. The computer model is a function of geographic location, altitude, day of the year, solar local time, and geomagnetic activity. It includes representations of the zonal mean circulation, stationary planetary waves, migrating tides, and the seasonal modulation thereof. HWM07 is composed of two components, a quiet time component for the background state described in this paper and a geomagnetic storm time component (DWM07) described in a companion paper.
[1] A VHF all-sky interferometric meteor radar system has been developed and installed at Buckland Park, South Australia. The radar is portable, allows a wide range of operating parameters, and can also be operated as a boundary layer radar. The analysis techniques have been developed using extensive simulations in an attempt to improve on standard techniques used by previous investigators. The results suggest that although pulse repetition frequencies (PRFs) around 2 kHz allow meteor velocity and deceleration estimation, PRFs around 500 Hz maximize count rate and improve the quality of meteor echo height estimates for this radar. Typical results are presented, indicating the radar obtains annual count rate variation of between 9000 and 14,000 height resolvable underdense meteors per day.
d. Open access institutional repositoriesThe AMS understands there is increasing demand for institutions to provide open access to the published research being produced by employees, such as faculty, of that institution. In recognition of this, the AMS grants permission to each of its authors to deposit the definitive version of that author's published AMS journal article in the repository of the author's institution provided all of the following conditions are met: The article lists the institution hosting the repository as the author's affiliation. The copy provided to the repository is the final published PDF of the article (not the EOR version made available by AMS prior to formal publication; see section 6). The repository does not provide access to the article until six months after the date of publication of the definitive version by the AMS. The repository copy includes the AMS copyright notice. T he Deep Propagating Gravity Wave Experiment (DEEPWAVE) was the first comprehensive measurement program devoted to quantifying the evolution of gravity waves (GWs) arising from sources at lower altitudes as they propagate, interact with mean and other wave motions, and ultimately dissipate from Earth's surface into the mesosphere and lower thermosphere (MLT). Research goals motivating the DEEPWAVE measurement program are summarized in Table 1. To achieve our research goals, DEEPWAVE needed to sample regions having large horizontal extents because of large horizontal GW propagation distances for some GW sources. DEEPWAVE accomplished this goal through airborne and ground-based (GB) measurements that together provided sensitivity to multiple GW sources and their propagation to, and effects at, higher altitudes. DEEPWAVE was performed over and around the GW "hotspot" region of New Zealand (Fig.1, top) during austral winter, when strong vortex edge westerlies provide a stable environment for deep GW propagation into the MLT.DEEPWAVE airborne measurements employed two research aircraft during a core 6-week airborne field program based at Christchurch, New Zealand, from 6 June to 21 July 2014. The National Science
425MARCH 2016 AMERICAN METEOROLOGICAL SOCIETY | Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream V (GV) provided in situ, dropsonde, and microwave temperature profiler (MTP) measurements extending from Earth's surface to ~20 km throughout the core field program (see Table 2). The GV also carried three new instruments designed specifically to address DEEPWAVE science goals: 1) a Rayleigh lidar measuring densities and temperatures from ~20 to 60 km, 2) a sodium resonance lidar measuring sodium densities and temperatures from ~75 to 100 km, and 3) an advanced mesosphere temperature mapper (AMTM) measuring temperatures in a horizontal plane at ~87 km with a field of view (FOV) of ~120 km along track and 80 km cross track. AMTM measurements were augmented by two side-viewing infrared (IR) airglow "wing" cameras also viewing an ~87-km altitude that extended the cross-track FOV to ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.