The response mechanism of the conducting polymer poly(pyrro1e) to a selection of gases and vapours was investigated using two techniques: measurement of resistance change and mass changes using a piezoelectric quartz crystal microbalance with the objective of characterizing responses for incorporation in sensor arrays. Bromide-doped films were exposed to methanol, hexane, 2-2-dimethylbutane, ammonia and hydrogen sulfide. Polymers of different thicknesses were also exposed to methanol vapour and the response profiles were studied. The responses were all of a Fickian type except the piezoelectric signal, which exhibited an anomalous non-Fickian response to methanol. This suggests that the poly(pyrro1e) resistance changes frequently observed are partly due to one stage in the two-stage sorption perhaps involving the swelling of the polymer. It was concluded that the response mechanism of poly(pyrro1e) sensing of different gases and vapours is due to a mixed response involving electronic effects and physical effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.