The term apoptosis often has been used interchangeably with the term programmed cell death. Here we describe a form of programmed cell death that is distinct from apoptosis by the criteria of morphology, biochemistry, and response to apoptosis inhibitors. Morphologically, this alternative form of programmed cell death appears during development and in some cases of neurodegeneration. Despite its lack of response to caspase inhibitors and Bcl-x L, we show that this form of cell death is driven by an alternative caspase-9 activity that is Apaf-1-independent. Characterization of this alternative form of programmed cell death should lead to new insight into cell death programs and their roles in development and degeneration.
Programmed cell death (pcd) may take the form of apoptotic or nonapoptotic pcd. Whereas cysteine aspartyl-specific proteases (caspases) mediate apoptosis, the mediators of nonapoptotic cell death programs are much less well characterized. Here, we report that paraptosis, an alternative, nonapoptotic cell death program that may be induced by the insulin-like growth factor I receptor (among other inducers), is mediated by mitogen-activated protein kinases (MAPKs) and inhibited by AIP-1/Alix. The inhibition by AIP-1/Alix is specific for paraptosis since apoptosis was not inhibited. Caspases were not activated in this paradigm, nor were caspase inhibitors effective in blocking cell death. However, insulinlike growth factor I receptor (IGFIR)-induced paraptosis was inhibited by MEK-2-specific inhibitors and by antisense oligonucleotides directed against c-jun N-terminal kinase-1 (JNK-1). These results suggest that IGFIR-induced paraptosis is mediated by MAPKs, and inhibited by AIP-1/Alix.
Related coactivators p300 and CBP affect the transcriptional activities of many transcription factors (TF), producing multiple downstream effects. Here we show that immediate early response TF, Egr1, acts upstream of p300/CBP to induce or to repress transcription, depending on the stimulus. Cells induced with serum to increase endogenous Egr1 increase the transcription of p300/CBP only when Egr1 binding sites in the promoter are not mutated, causing the expression of downstream targets of Egr1 which leads to survival and growth. Induction of p300/CBP by Egr1 results in acetylation and stabilization of Egr1 and transactivation of survival genes but repression of Egr1 and p300/CBP in negative feedback loops. In contrast, induction of Egr1 by UV-C irradiation leads to repression of p300/CBP transcription: Egr1 is preferentially phosphorylated, leading to regulation of target genes that cause cell death. This complex balance of opposing effects appears to finely modulate important cellular life and death responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.