We have previously used a subtractive immunization (SI) approach to generate monoclonal antibodies (mAbs) against proteins preferentially expressed by the highly metastatic human epidermoid carcinoma cell line, M + HEp3. Here we report the immunopurification, identification and characterization of SIMA135/CDCP1 (subtractive immunization M + HEp3 associated 135 kDa protein/CUB domain containing protein 1) using one of these mAbs designated 41-2. Protein expression levels of SIMA135/CDCP1 correlated with the metastatic ability of variant HEp3 cell lines. Protein sequence analysis predicted a cell surface location and type I orientation of SIMA135/CDCP1, which was confirmed directly by immunocytochemistry. Analysis of deglycosylated cell lysates indicated that up to 40 kDa of the apparent molecular weight of SIMA135/CDCP1 is because of N-glycosylation. Western blot analysis using a antiphosphotyrosine antibody demonstrated that SIMA135/ CDCP1 from HEp3 cells is tyrosine phosphorylated. Selective inhibitor studies indicated that an Src kinase family member is involved in the tyrosine phosphorylation of the protein. In addition to high expression in M + HEp3 cells, the SIMA135/CDCP1 protein is expressed to varying levels in 13 other human tumor cell lines, manifesting only a weak correlation with the reported metastatic ability of these tumor cell lines. The protein is not detected in normal human fibroblasts and endothelial cells. Northern blot analysis indicated that SIMA135/ CDCP1 mRNA has a restricted expression pattern in normal human tissues with highest levels of expression in skeletal muscle and colon. Immunohistochemical analysis indicated apical and basal plasma membrane expression of SIMA135/CDCP1 in epithelial cells in normal colon. In colon tumor, SIMA135/CDCP1 expression appeared dysregulated showing extensive cell surface as well as cytoplasmic expression. Consistent with in vitro shedding experiments on HEp3 cells, SIMA135/CDCP1 was also detected within the lumen of normal and cancerous colon crypts, suggesting that protein shedding may occur in vivo. Thus, specific immunodetection followed by proteomic analysis allows for the identification and partial characterization of a heretofore uncharacterized human cell surface antigen.
Related coactivators p300 and CBP affect the transcriptional activities of many transcription factors (TF), producing multiple downstream effects. Here we show that immediate early response TF, Egr1, acts upstream of p300/CBP to induce or to repress transcription, depending on the stimulus. Cells induced with serum to increase endogenous Egr1 increase the transcription of p300/CBP only when Egr1 binding sites in the promoter are not mutated, causing the expression of downstream targets of Egr1 which leads to survival and growth. Induction of p300/CBP by Egr1 results in acetylation and stabilization of Egr1 and transactivation of survival genes but repression of Egr1 and p300/CBP in negative feedback loops. In contrast, induction of Egr1 by UV-C irradiation leads to repression of p300/CBP transcription: Egr1 is preferentially phosphorylated, leading to regulation of target genes that cause cell death. This complex balance of opposing effects appears to finely modulate important cellular life and death responses.
Recent studies suggested an association of endothelial microRNA-126 (miR-126) with type 2 diabetes mellitus (T2DM). In the current study, we examined whether circulating miR-126 is associated with T2DM and pre-diabetic syndrome. The study included 82 subjects with impaired glucose tolerance (IGT), 75 subjects with impaired fasting glucose (IFG), 160 patients with newly diagnosed T2DM, and 138 healthy individuals. Quantitative polymerase chain reaction (qPCR) was used to examine serum miR-126. Serum miR-126 was significantly lower in IGT/IFG subjects and T2DM patients than in healthy controls (p < 0.05). After six months of treatment (diet control and exercise in IGT/IFG subjects, insulin plus diet control and exercise in T2DM patients), serum miR-126 increased significantly (p < 0.05). An analysis based on serum miR-126 in the sample revealed a significantly higher odds ratio (OR) for the subjects with the lowest 1/3 of serum miR-126 for T2DM (OR: 3.500, 95% confidence interval: 1.901–6.445, p < 0.05) than subjects within the highest 1/3 of serum miR-126. Such an association was still apparent after adjusting for other major risk factors. The area under the curve (AUC) for the receiver-operating characteristic (ROC) analysis was 0.792 (95% confidence interval: 0.707–0.877, p < 0.001). These results encourage the use of serum miR-126 as a biomarker for pre-diabetes and diabetes mellitus, as well as therapeutic response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.