Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.
Covert attention and perceptual learning enhance perceptual performance. The relation between these two mechanisms is largely unknown. Previously, we showed that manipulating involuntary, exogenous spatial attention during training improved performance at trained and untrained locations, thus overcoming the typical location specificity. Notably, attention-induced transfer only occurred for high stimulus contrasts, at the upper asymptote of the psychometric function (i.e., via response gain). Here, we investigated whether and how voluntary, endogenous attention, the top-down and goal-based type of covert visual attention, influences perceptual learning. Twenty-six participants trained in an orientation discrimination task at two locations: half of participants received valid endogenous spatial precues (attention group), while the other half received neutral precues (neutral group). Before and after training, all participants were tested with neutral precues at two trained and two untrained locations. Within each session, stimulus contrast varied on a trial basis from very low (2%) to very high (64%). Performance was fit by a Weibull psychometric function separately for each day and location. Performance improved for both groups at the trained location, and unlike training with exogenous attention, at the threshold level (i.e., via contrast gain). The neutral group exhibited location specificity: Thresholds decreased at the trained locations, but not at the untrained locations. In contrast, participants in the attention group showed significant location transfer: Thresholds decreased to the same extent at both trained and untrained locations. These results indicate that, similar to exogenous spatial attention, endogenous spatial attention induces location transfer, but influences contrast gain instead of response gain.
Visual perceptual learning (VPL) refers to the improvement in performance on a visual task due to practice. A hallmark of VPL is specificity, as improvements are often confined to the trained retinal locations or stimulus features. We have previously found that exogenous (involuntary, stimulus-driven) and endogenous (voluntary, goal-driven) spatial attention can facilitate the transfer of VPL across locations in orientation discrimination tasks mediated by contrast sensitivity. Here, we investigated whether exogenous spatial attention can facilitate such transfer in acuity tasks that have been associated with higher specificity. We trained observers for 3 days (days 2-4) in a Landolt acuity task (Experiment 1) or a Vernier hyperacuity task (Experiment 2), with either exogenous precues (attention group) or neutral precues (neutral group). Importantly, during pre-tests (day 1) and post-tests (day 5), all observers were tested with neutral precues; thus, groups differed only in their attentional allocation during training. For the Landolt acuity task, we found evidence of location transfer in both the neutral and attention groups, suggesting weak location specificity of VPL. For the Vernier hyperacuity task, we found evidence of location and feature specificity in the neutral group, and learning transfer in the attention group-similar improvement at trained and untrained locations and features. Our results reveal that, when there is specificity in a perceptual acuity task, exogenous spatial attention can overcome that specificity and facilitate learning transfer to both untrained locations and features simultaneously with the same training. Thus, in addition to improving performance, exogenous attention generalizes perceptual learning across locations and features.
In contrast to traditional professional sports, there are few standardized metrics in professional esports (competitive multiplayer video games) for assessing a player's skill and ability. We assessed the performance of professional-level players in Aim LabTM, a first-person shooter training and assessment game, with two target-shooting tasks. These tasks differed primarily in target size: the task with large targets provided an incentive to be fast but imprecise and the task with large targets provided an incentive to be precise but slow. Each player's motor acuity was measured by characterizing the speed-accuracy trade-off in shot behavior: shot time (elapsed time for a player to shoot at a target) and shot spatial error (distance from center of a target). We also characterized the fine-grained kinematics of players' mouse movements. Our findings demonstrate that: 1) movement kinematics depended on task demands; 2) individual differences in motor acuity were significantly correlated with kinematics; and 3) performance, combined across the two target sizes, was poorly characterized by Fitts Law. Our approach to measuring motor acuity has widespread applications not only in esports assessment and training, but also in basic (motor psychophysics) and clinical (gamified rehabilitation) research.
Attentional selection is a dynamic process that relies on multiple types of representations. That object representations contribute to attentional selection has been known for decades; however, most evidence for this contribution has been gleaned from studies that have relied on various forms of spatial cueing (some endogenous and some exogenous). It has thus remained unclear whether object-based attentional selection is a direct result of spatial cuing, or whether it still emerges without any spatial marker. Here we used a novel method-the temporal-order judgment (TOJ)-to examine whether object-based guidance emerges in the absence of spatial cuing. Participants were presented with two rectangles oriented either horizontally or vertically. Following a 150-ms preview time, two target stimuli were presented on the same or on different objects, and participants were asked to report which of the two stimuli had appeared first. The targets consisted of stimuli that formed a percept of a Bhole^or a Bhill.^First, we demonstrated that the Bhill^target was indeed processed faster, as evidenced by a positive perceived simultaneity (PSS) measure. We then demonstrated that if two targets appeared with equal probabilities on the same and on different objects, the PSS values, although positive, were not modulated by the objects. In a subsequent set of experiments, we showed that objects can modulate attentional allocationhowever, only when they are biased by a spatial (endogenous) cue. In other words, in the absence of a spatial cue or bias, object representations do not guide attentional selection. In addition to providing new constraints for theories of objectbased attentional guidance, these experiments introduce a novel paradigm for measuring object-based attentional effects.Keywords Object-based attention . Space-based attention . Temporal processingTo cope with the vast amount of incoming sensory information, the visual system must establish a stable representation of the environment and selectively process relevant information. Visual attention is a selection mechanism gating what and how visual information is processed, and given the retinotopic organization of the visual system, is largely mediated by spatial locations. Such inherent reliance on spatial coding has been demonstrated across numerous cuing studies. In most of these studies, spatial attention enhances performance: when a spatial location is cued, either by an exogenous sensory event or by endogenous instruction, targets are detected and identified more quickly and accurately if they appear near the cued location, relative to uncued locations (for reviews, see
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.