Measurement techniques such as Magnetic Resonance Velocimety (MRV) and Magnetic Resonance Concentration (MRC) are useful for obtaining 3D time-averaged flow quantities in complex turbulent flows, but cannot measure turbulent correlations or near-wall data. In this work, we use highly resolved Large Eddy Simulations (LES) to complement the experiments and bypass those limitations. Coupling LES and magnetic resonance experimental techniques is especially advantageous in complex non-homogeneous flows because the 3D data allow for extensive validation, creating confidence that the simulation results portray a physically realistic flow. As such we can treat the simulation as data, which "enrich" the original MRI mean flow results. This approach is demonstrated using a cylindrical and inclined jet in crossflow with three distinct velocity ratios, r = 1, r = 1.5, and r = 2. The numerical mesh is highly refined in order for the subgrid scale models to have negligible contribution, and a systematic, iterative procedure is described to set inlet conditions. The validation of the mean flow data shows excellent agreement between simulation and experiments, which creates confidence that the LES data can be used to enrich the experiments with near-wall results and turbulent statistics. We also discuss some mean flow features and how they vary with velocity ratio, including wall concentration, the counter rotating vortex pair, and the in-hole velocity.
Pipe flow responds to strong perturbations in ways that are fundamentally different from the response exhibited by boundary layers undergoing a similar perturbation, primarily because of the confinement offered by the pipe wall, and the need to satisfy continuity. We review such differences by examining previous literature, with a particular focus on the response of pipe flow to three different kinds of disturbances: the abrupt change in surface condition from rough to smooth, the obstruction due to presence of a single square bar roughness elements of different sizes, and the flow downstream of a streamlined body-of-revolution placed on the centerline of the pipe. In each case, the initial response is strongly influenced by the pipe geometry, but far downstream all three flows display a common feature, which is the very slow, second-order recovery that can be explained using a model based on the Reynolds stress equations. Some future directions for research are also given.
Herein, we describe the design and testing of a stereoscopic PIV system uniquely adapted for the high pressure environment of the Princeton Superpipe. The Superpipe is a recirculating pipe facility that utilizes compressed air as the working fluid to attain very high Reynolds numbers. Commercial piping is used as the pressure vessel to hold pressure up to 220 bars, and a test pipe is enclosed inside with a development length of 200 diameters that ensures a fully-developed condition at the test section. The highest achievable Reynolds number (based on the bulk velocity and the pipe diameter) is 35×106, corresponding to a maximum friction Reynolds number of 5×105.
The unprecedented range of Reynolds number has enabled a number of new insights in the behavior of high Reynolds number wall-bounded turbulence (Zagarola and Smits, 1998; Hultmark et al., 2013). However, past measurements in the Superpipe have been primarily restricted to single-component, one- or two-point statistics of fully-developed pipe flows. The present work aims to expand the capability of the Superpipe to study turbulent coherent structures and multi-point statistics by means of a new stereoscopic PIV system. The high pressure environment and the confined space inside the pressure vessel pose challenges to both imaging and seeding, the solutions to which will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.