This paper considers the shrinkage estimation of multilevel models that are appropriate for ordinal longitudinal data. These models can accommodate multiple random effects and, additionally, allow for a general form of model covariates that are related to the overall level of the responses and changes to the response over time. The likelihood inference for multilevel models is computationally burdensome due to intractable integrals. A maximum marginal likelihood (MML) method with Fisher's scoring procedure is therefore followed to estimate the random and fixed effects parameters. In real life data, researchers may have collected many covariates for the response. Some of these covariates may satisfy certain constraints which can be used to produce a restricted estimate from the unrestricted likelihood function. The unrestricted and restricted MMLs can then be combined optimally to form the pretest and shrinkage estimators. Asymptotic properties of these estimators including biases and risks will be discussed. A simulation study is conducted to assess the performance of the estimators with respect to the unrestricted MML estimator. Finally, the relevance of the proposed estimators will be illustrated with a real data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.