It was recently shown that a massive thin shell that is sandwiched between a flat interior and an exterior geometry given by the outgoing Vaidya metric becomes null in a finite proper time. We investigate this transition for a general spherically-symmetric metric outside the shell and find that it occurs generically. Once the shell is null its persistence on a null trajectory can be ensured by several mechanisms that we describe. Using the outgoing Vaidya metric as an example we show that if a dust shell acquires surface pressure on its transition to a null trajectory it can evade the Schwarzschild radius through its collapse. Alternatively, the pressureless collapse may continue if the exterior geometry acquires a more general form.
The inhomogeneous Zerilli equation is solved in time-domain numerically with the Chebyshev spectral collocation method to investigate a radial-infall of the point particle towards a Schwarzschild black hole. Singular source terms due to the point particle appear in the equation in the form of the Dirac δ-function and its derivative. For the approximation of singular source terms, we use the direct derivative projection method proposed in [9] without any regularization. The gravitational waveforms are evaluated as a function of time. We compare the results of the spectral collocation method with those of the explicit second-order central-difference method. The numerical results show that the spectral collocation approximation with the direct projection method is accurate and converges rapidly when compared with the finite-difference method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.