Environmental change caused by urban development, land drainage, agriculture or climate change may result in accelerated decay of in situ archaeological remains. This paper reviews research into impacts of environmental change on hydrological processes of relevance to preservation of archaeological remains in situ. It compares work at rural sites with more complex urban environments. The research demonstrates that both the quantity and quality of data on preservation status, and hydrological and chemical parameters collected during routine archaeological surveys needs to be improved. The work also demonstrates the necessity for any archaeological site to be placed within its topographic and geological context. In order to understand preservation potential fully, it is necessary to move away from studying the archaeological site as an isolated unit, since factors some distance away from the site of interest can be important for determining preservation. The paper reviews what is known about the hydrological factors of importance to archaeological preservation and recommends research that needs to be conducted so that archaeological risk can be more adequately predicted and mitigated. Any activity that changes either source pathways or the dominant water input may have an impact not just because of changes to the water balance or the water table, but because of changes to water chemistry. Therefore efforts to manage
Examples of wetland deposits can be found across the globe and are known for preserving organic archaeological and environmental remains that are vitally important to our understanding of past human-environment interactions. The Mesolithic site of Star Carr (Yorkshire, United Kingdom) represents one of the most influential archives of human response to the changing climate at the end of the last glacial in Northern Europe. A hallmark of the site since its discovery in 1948 has been the exceptional preservation of its organic remains. Disturbingly, recent excavations have suggested that the geochemistry of the site is no longer conducive to such remarkable survival of organic archaeological and environmental materials. Microcosm (laboratory-based) burial experiments have been undertaken, alongside analysis of artifacts excavated from the site, to assess the effect of these geochemical changes on the remaining archaeological material. By applying a suite of macroscopic and molecular analyses, we demonstrate that the geochemical changes at Star Carr are contributing to the inexorable and rapid loss of valuable archaeological and paleoenvironmental information. Our findings have global implications for other wetland sites, particularly archaeological sites preserved in situ.organic artifacts | geochemistry | environmental change | analytical chemistry | wetland archaeology
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.