Waterlogged archaeological wood can present management challenges due to its vulnerability to chemical and biological decay, both during burial and post-excavation. Decay processes also often leave it severely weakened and therefore susceptible to mechanical damage. Quantifying preservation and understanding active decay mechanisms is therefore critical in informing the management of this unique cultural resource. It is critical that assessments of preservation are robust, and sensitive enough to allow changes over time to be detected. A wide range of analytical methods can be applied to assess the state of preservation of waterlogged archaeological wood, and determining which of these is most appropriate to the circumstances can be challenging. This review summarises some of the most commonly reported methods suitable for the analysis of waterlogged archaeological wood, ranging from widely used 'low-tech' methods, to assessment using advanced analytical instrumentation. Methods are evaluated in terms of the information gained weighed up against their cost, logistical considerations, and time investments, with the aim of supporting the development of an analytical strategy. We conclude that although an analytical strategy must be informed by the aims of assessment as well as any external restrictions, the best available analytical techniques should be employed in order to supply an accurate baseline against which future change can be measured. Critically, a multi-analytical approach is vital in obtaining a clear picture of the present state of decay, as no single technique gives the best assessment.
A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides.
Examples of wetland deposits can be found across the globe and are known for preserving organic archaeological and environmental remains that are vitally important to our understanding of past human-environment interactions. The Mesolithic site of Star Carr (Yorkshire, United Kingdom) represents one of the most influential archives of human response to the changing climate at the end of the last glacial in Northern Europe. A hallmark of the site since its discovery in 1948 has been the exceptional preservation of its organic remains. Disturbingly, recent excavations have suggested that the geochemistry of the site is no longer conducive to such remarkable survival of organic archaeological and environmental materials. Microcosm (laboratory-based) burial experiments have been undertaken, alongside analysis of artifacts excavated from the site, to assess the effect of these geochemical changes on the remaining archaeological material. By applying a suite of macroscopic and molecular analyses, we demonstrate that the geochemical changes at Star Carr are contributing to the inexorable and rapid loss of valuable archaeological and paleoenvironmental information. Our findings have global implications for other wetland sites, particularly archaeological sites preserved in situ.organic artifacts | geochemistry | environmental change | analytical chemistry | wetland archaeology
During a pre‐site survey and construction of a new metro route and station in Copenhagen, fossiliferous organic‐rich sediments were encountered. This paper reports on multidisciplinary investigations of these organic sediments, which occurred beneath a sediment succession with a lower till, glacifluvial sand and gravel, an upper till and glacifluvial sand. The organic sediments were underlain by glacifluvial sand and gravel. The organic‐rich sediments, which were up to 0.5 m thick, accumulated in a low‐energy environment, possibly an oxbow lake. They were rich in plant fossils, which included warmth‐demanding trees and other species, such as Najas minor, indicating slightly higher summer temperatures than at present. Freshwater shells were also frequent. Bithynia opercula allowed the sediments to be put into an aminostratigraphical framework. The amino acid racemization (AAR) ratios indicate that the organic sediments formed during Marine Isotope Stage 7 (MIS 7), which is consistent with optically stimulated luminescence dating that gave ages of 206 and 248 ka from the underlying minerogenic deposit. The assemblages from Trianglen are similar to interglacial deposits from the former Free Port (1.4 km away) in Copenhagen, except that Corbicula and Pisidium clessini were not found at Trianglen. The presence of these bivalves at the Free Port and the ostracod Scottia tumida at Trianglen indicates a pre‐Eemian age. AAR data from archived Bithynia opercula from the Free Port were almost identical to those from Trianglen, indicating that the two sites are contemporary. We suggest the Trianglen interglacial be used as a local name for the MIS 7 interglacial deposits in Copenhagen. MIS 7 deposits have rarely been documented from the region, but MIS 7 deposits may have been mistaken for other ages. The use of AAR ratios in Bithynia opercula has a great potential for correlation of interglacial non‐marine deposits in mainland northern Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.