Background Artificial intelligence (AI) and machine learning (ML) are interwoven into our everyday lives and have grown enormously in some major fields in medicine including cardiology and radiology. While these specialties have quickly embraced AI and ML, orthopedic surgery has been slower to do so. Fortunately, there has been a recent surge in new research emphasizing the need for a systematic review. The primary objective of this systematic review will be to provide an update on the advances of AI and ML in the field of orthopedic surgery. The secondary objectives will be to evaluate the applications of AI and ML in providing a clinical diagnosis and predicting post-operative outcomes and complications in orthopedic surgery. Methods A systematic search will be conducted in PubMed, ScienceDirect, and Google Scholar databases for articles written in English, Italian, French, Spanish, and Portuguese language articles published up to September 2020. References will be screened and assessed for eligibility by at least two independent reviewers as per PRISMA guidelines. Studies must apply to orthopedic interventions and acute and chronic orthopedic musculoskeletal injuries to be considered eligible. Studies will be excluded if they are animal studies and do not relate to orthopedic interventions or if no clinical data were produced. Gold standard processes and practices to obtain a clinical diagnosis and predict post-operative outcomes shall be compared with and without the use of ML algorithms. Any case reports and other primary studies assessing the prediction rate of post-operative outcomes or the ability to identify a diagnosis in orthopedic surgery will be included. Systematic reviews or literature reviews will be examined to identify further studies for inclusion, and the results of meta-analyses will not be included in the analysis. Discussion Our findings will evaluate the advances of AI and ML in the field of orthopedic surgery. We expect to find a large quantity of uncontrolled studies and a smaller subset of articles describing actual applications and outcomes for clinical care. Cohort studies and large randomized control trial will likely be needed. Trial registration The protocol will be registered on PROSPERO international prospective register of systematic reviews prior to commencement.
Background Musculoskeletal injuries and conditions affect millions of individuals. These ailments are typically managed by immobilization, physiotherapy, or activity modification. Regenerative medicine has experienced tremendous growth in the past decades, especially in musculoskeletal medicine. Umbilical cord-derived Wharton’s jelly is an exciting new option for such therapies. Wharton’s jelly is a connective tissue located within the umbilical cord largely composed of mesenchymal stem cells and extracellular matrix components, including collagen, chondroitin sulfate, hyaluronic acid, and sulfated proteoglycans. Wharton’s jelly is a promising and applicable biologic source for orthopedic regenerative application. Methods A systematic search will be conducted in PubMed, ScienceDirect, and Google Scholar databases of English, Italian, French, Spanish, and Portuguese language articles published to date. References will be screened and assessed for eligibility by two independent reviewers as per PRISMA guidelines. Articles will be considered without exclusion to sex, activity, or age. Studies will be included if they used culture-expanded, mesenchymal stem/stromal cells of mesenchymal stem cells and/or connective tissue obtained from Wharton’s jelly. Studies will be excluded if Wharton’s jelly is not the sole experimental examined cell type. Placebos, conventional non-operative therapies including steroid injections, exercise, and NSAIDs will be compared. The study selection process will be performed independently by two reviewers using a reference software. Data synthesis and meta-analysis will be performed separately for clinical and pre-clinical studies. Discussion The results will be published in relevant peer-reviewed scientific journals. Investigators will present results at national or international conferences. Trial registration The protocol was registered on PROSPERO international prospective register of systematic reviews prior to commencement, CRD42020182487.
Several conditions can lead to the development of a subchondral cyst. The mechanism by which the cysts form, their location, and their severity depend on the underlying pathology, although the exact pathogenesis is not fully elucidated. Treatment options vary according to the location of the cyst, with less invasive procedures such as calcium phosphate cement injection to a joint arthroplasty when there is an extensive cyst in communication with the joint space. If the cyst is circumscribed, an intraosseous bioplasty (IOBP) can be performed. Described in this paper is an IOBP, a minimally invasive technique that preserves the joint and can be applied to most subchondral cysts. In our patient, both the appearance of the cyst at imaging and pain after IOBP greatly improved with the combined use of decompression and grafting. In those patients in whom conservative management fails to ameliorate symptoms, IOBP should be considered.
Background:Artificial Intelligence (AI) and Machine Learning (ML)is interwoven into our everyday lives and has grown enormously in some major fields in medicine including cardiology and radiology. While these specialties have quickly embraced AI and ML, orthopedic surgery has been slower to do so. Fortunately, there has been a recent surge in new research emphasizing the need for a systematic review. The primary objective of this review is to provide an update on the advances of AI and ML in the field of orthopedic surgery. The secondary objectives of this review are to evaluate the applications of AI and ML in providing a clinical diagnosis and predicting post-operative outcomes and complications in orthopedic surgery.Methods:A systematic search will be conducted in PubMed, Science Direct, and Google Scholar databases for articles written in English, Italian, French, Spanish and Portuguese language articles published up to July 2020. References will be screened and assessed for eligibility by at least two independent reviewers as per PRISMA guidelines. Studies must apply to orthopedic interventions, acute and chronic orthopedic musculoskeletal injuries to be considered eligible. Studies will be excluded if they are animal studies, do not relate to orthopedic interventions, or if no clinical data were used. Gold standard processes and practices to obtain a clinical diagnosis and predict post-operative outcomes shall be compared with and without the use of ML algorithms. Any case reports and other primary studies assessing the prediction rate of post-operative outcomes or the ability to identify a diagnosis in orthopedic surgery will be included. Systematic reviews or literature reviews will be examined to identify further studies for inclusion, and results of meta-analyses will not be included in the analysis.Discussion:Our findings will evaluate the advances of AI and ML in the field of orthopedic surgery. We expect to find a large quantity of uncontrolled studies, and a smaller subset of papers describing actual applications and outcomes for clinical care. Cohort studies and large randomized control trial will likely be needed.Trial registration: The Protocol will be registered on PROSPERO international prospective register of systematic reviews prior to commencement.
Obesity is on the rise around the world, carrying along with it a wide range of comorbidities and complications. We report on a super-super morbidly obese 43-year-old female, with a body mass index (BMI) of 77.85 kg/m 2 (173cm, 233kg), who presented for a scheduled suboccipital craniectomy with C-1 laminectomy secondary to symptoms from an Arnold-Chiari type-I malformation. Already a challenging type of surgery, due to the patient's extreme BMI and positioning, the surgery became more difficult. There are many potential complications for general anesthesia in the obese patient, including a difficult airway, postoperative breathing problems due to obstructive sleep apnea (OSA), risk for cardiovascular events, and complications due to changes in drug pharmacokinetic/dynamic properties. In addition to the complications associated with anesthesia, the patient needed to be prone and positioned using Mayfield pins. Despite these challenges, there were neither anesthesia nor surgical complications. Thus, while careful considerations and informed consent should be obtained, BMI alone should not deter one from performing a procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.