In this paper, we compare different nanoclay-PEG composites and the influence of the input parameters especially the percentage of PEG and the clay size. Because of the facility of material elaboration, dried state with grinding, we adopted a complete experiments plan to obtain a maximum of robustness of the responses. For each sample, we made an XRD analysis to see if we obtain the intercalation of the PEG 6000 (Polyethylene Glycol 6000) within the clay sheets. The characterization adopted consists on the measurement of the shrinking of some cylinders we made, the liquidity and plasticity limits according to the Casagrande protocol used in geotechnical clays characterizations. We utilize also the methylen blue protocol to estimate the variation of the specific surface of ionic exchange of the clay sheets according to the PEG 6000 percentage and the clay sizes. SEM microscopy permits to visualize some of the phases detected by the XRD analysis. The TEM microscopy permits also to see the amorphous phases created by the grinding protocol which affects significantly the specific surface and the shrinking of the new materials. For each section, we made some conclusions with interpretation in order to integrate these results in civil engineering, classical/artisanal material construction and geotechnical fields.
Abstract. Miocene marl is one of the widespread geological substrates in Fez vicinity (Central Morocco). In this study we proceed by a physicochemical characterization of the marl after doping with metal oxides, by various analytical techniques, namely the X-ray fluorescence, the mineralogical analysis, and dielectric property. The doping of these marl was conducted by solid oxides of Al 2 O 3 at different percentages (5%, 10% and 15%). The results of chemical analysis showed the Al 2 O 3 increase during doping. So, the mineralogical analysis of doped clays shows peaks' increases for kaolin. The marl doped acquired the property of their good electrical conductor compared to crass marl.
IntroductionThe marl's minerals are abundant untreated material in several areas worldwide. They are often under-valued for human use. However, due to demands of the society in terms of sustainability and energy saving, the valuation of these resources to develop new materials, most environmentally friendly has become a concern both scientific and industrial aims.Ceramics are the growing research to obtain materials with good chemical stability and good hot properties (Jouenne, 1984). The balance between these properties and industrial requirements allowed clay materials uses at craft departure (pottery, tile), to progress towards high-tech applications such as electrical and thermal insulation, electric candle, sound insulation, etc. (Louet, 2003).
Nowadays, the energetic efficiency becomes one of the major interests of the global society. Thus, the energetic challenges of the new century enforce the scientific and industrial environment to the development of new efficient materials, which present more than the classical thermal properties, according to the energy storage, energy consumption and other specific needs. In this context, the present work constitutes the third step of the development of a new kind of composite materials (microcomposites and nano-composites), using natural marl (clay) clay and biodegradable polymer, which is the PolyEthylene Glycol 6000 (PEG 6000). This step corresponds to characterization of the variation of the specific heat (denoted Cp) of the materials elaborated. So, in order to estimate the capacity of thermal energy adsorption, we utilized a SHIMATZU-DSC 60 Differential Scanning Calorimeter. The main results present the evolution of the Cp according to the PEG 6000 doping and also the specific melting enthalpy of the polymer within the natural clay matrix; by the way this enthalpy constitutes the specific heat stocked in the materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.