We define causal estimands for experiments on single time series, extending the potential outcome framework to dealing with temporal data. Our approach allows the estimation of a broad class of these estimands and exact randomization based p-values for testing causal effects, without imposing stringent assumptions. We further derive a general central limit theorem that can be used to conduct conservative tests and build confidence intervals for causal effects. Finally, we provide three methods for generalizing our approach to multiple units that are receiving the same class of treatment, over time. We test our methodology on simulated "potential autoregressions,"which have a causal interpretation. Our methodology is partially inspired by data from a large number of experiments carried out by a financial company who compared the impact of two different ways of trading equity futures contracts. We use our methodology to make causal statements about their trading methods.
The authors analyzed data from multiple large-scale randomized experiments on LinkedIn’s People You May Know algorithm, which recommends new connections to LinkedIn members, to test the extent to which weak ties increased job mobility in the world’s largest professional social network. The experiments randomly varied the prevalence of weak ties in the networks of over 20 million people over a 5-year period, during which 2 billion new ties and 600,000 new jobs were created. The results provided experimental causal evidence supporting the strength of weak ties and suggested three revisions to the theory. First, the strength of weak ties was nonlinear. Statistical analysis found an inverted U-shaped relationship between tie strength and job transmission such that weaker ties increased job transmission but only to a point, after which there were diminishing marginal returns to tie weakness. Second, weak ties measured by interaction intensity and the number of mutual connections displayed varying effects. Moderately weak ties (measured by mutual connections) and the weakest ties (measured by interaction intensity) created the most job mobility. Third, the strength of weak ties varied by industry. Whereas weak ties increased job mobility in more digital industries, strong ties increased job mobility in less digital industries.
Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use method for generating multiple imputations using a Gaussian copula. The Gaussian copula for multiple imputation (Hoff, 2007) allows scholars to attain estimation results that have good coverage and small bias. The use of copulas to model the dependence among variables will enable researchers to construct valid joint distributions of the data, even without knowledge of the actual underlying marginal distributions. Multiple imputations are then generated by drawing observations from the resulting posterior joint distribution and replacing the missing values. Using simulated and observational data from published social science research, we compare imputation via Gaussian copulas with two other widely used imputation methods: MICE and Amelia II. Our results suggest that the Gaussian copula approach has a slightly smaller bias, higher coverage rates, and narrower confidence intervals compared to the other methods. This is especially true when the variables with missing data are not normally distributed. These results, combined with theoretical guarantees and ease-of-use suggest that the approach examined provides an attractive alternative for applied researchers undertaking multiple imputations.
In panel experiments, we randomly expose multiple units to different treatments and measure their subsequent outcomes, sequentially repeating the procedure numerous times. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative effectiveness of alternative treatment paths. For the leading example, known as the lag-p dynamic causal effects, we provide a nonparametric estimator that is unbiased over the randomization distribution. We then derive the finite population limiting distribution of our estimators as either the sample size or the duration of the experiment increases. Our approach provides a new technique for deriving finite population central limit theorems that exploits the underlying Martingale property of unbiased estimators. We further describe two methods for conducting inference on dynamic causal effects: a conservative test for weak null hypotheses of zero average causal effects using the limiting distribution and an exact randomization-based test for sharp null hypotheses. We also derive the finite population limiting distribution of commonly-used linear fixed effects estimators, showing that these estimators perform poorly in the presence of dynamic causal effects. We conclude with a simulation study and an empirical application in which we reanalyze a lab experiment on cooperation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.