We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behaviour arises, and the ultrastrong coupling (USC) regime, where rotating-wave approximation (RWA) cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling (DSC) regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the lab with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
We present results on the existence of long arithmetic progressions in the Thue-Morse word and in a class of generalised Thue-Morse words. Our arguments are inspired by van der Waerden's proof for the existence of arbitrary long monochromatic arithmetic progressions in any finite colouring of the (positive) integers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.