Quasicrystals are non-periodic solids that were discovered in 1982 by Dan Shechtman, Nobel Prize Laureate in Chemistry 2011. The underlying mathematics, known as the theory of aperiodic order, is the subject of this comprehensive multi-volume series. This first volume provides a graduate-level introduction to the many facets of this relatively new area of mathematics. Special attention is given to methods from algebra, discrete geometry and harmonic analysis, while the main focus is on topics motivated by physics and crystallography. In particular, the authors provide a systematic exposition of the mathematical theory of kinematic diffraction. Numerous illustrations and worked-out examples help the reader to bridge the gap between theory and application. The authors also point to more advanced topics to show how the theory interacts with other areas of pure and applied mathematics.
Trace maps of two-letter substitution rules are investigated with special emphasis on the underlying algebraic structure and on the existence of invariants. We illustrate the results with the generalized Fibonacci chains and show that the well-known Fricke character I(x, y, z)=x2+y2+z2−2xyz−1 is not the only type of invariant that can occur. We discuss several physical applications to electronic spectra including the gap-labeling theorem, to kicked two-level systems, and to the classical 1D Ising model with non-commuting transfer matrices.
Some years ago, Luck proposed a relevance criterion for the effect of aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In this article, we show how Luck's criterion can be derived within an exact renormalisation scheme for Ising quantum chains with coupling constants modulated according to substitution rules. Luck's conjectures for this case are confirmed and refined. Among other outcomes, we give an exact formula for the correlation length critical exponent for arbitrary two-letter substitution sequences with marginal fluctuations of the coupling constants.
We study energy spectra, eigenstates and quantum diffusion for one-and two-dimensional quasiperiodic tight-binding models. As our one-dimensional model system we choose the silver mean or "octonacci" chain. The twodimensional labyrinth tiling, which is related to the octagonal tiling, is derived from a product of two octonacci chains. This makes it possible to treat rather large systems numerically. For the octonacci chain, one finds singular continuous energy spectra and critical eigenstates which is the typical behaviour for one-dimensional Schrödinger operators based on substitution sequences. The energy spectra for the labyrinth tiling can, depending on the strength of the quasiperiodic modulation, be either band-like or fractallike. However, the eigenstates are multifractal. The temporal spreading of a wavepacket is described in terms of the autocorrelation function C(t) and the mean square displacement d(t). In all cases, we observe power laws C(t) ∼ t −δ and d(t) ∼ t β . For the octonacci chain, 0 < δ < 1, whereas for the labyrinth tiling a crossover is observed from δ = 1 to 0 < δ < 1 with increasing modulation strength. Corresponding to the multifractal eigenstates, we obtain anomalous diffusion with 0 < β < 1 for both systems. Moreover, we find that the behaviour of C(t) and d(t) is independent of the shape and the location of the initial wavepacket. We use our results to check several relations between the diffusion exponent β and the fractal dimensions of energy spectra and eigenstates that were proposed in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.