Cholinergic transmission shapes the maturation of glutamatergic circuits, yet the developmental sources of acetylcholine have not been systematically explored. Here, we have used Cre‐recombinase‐mediated genetic labeling to identify and map both mature and developing CNS neurons that express choline acetyltransferase (ChAT). Correction of a significant problem with a widely used ChatCre transgenic line ensures that this map does not contain expression artifacts. ChatCre marks all known cholinergic systems in the adult brain, but also identifies several brain areas not usually regarded as cholinergic, including specific thalamic and hypothalamic neurons, the subiculum, the lateral parabrachial nucleus, the cuneate/gracilis nuclei, and the pontocerebellar system. This ChatCre fate map suggests transient developmental expression of a cholinergic phenotype in areas important for cognition, motor control, and respiration. We therefore examined expression of ChAT and the vesicular acetylcholine transporter in the embryonic and early postnatal brain to determine the developmental timing of this transient cholinergic phenotype, and found that it mirrored the establishment of relevant glutamatergic projection pathways. We then used an intersectional genetic strategy combining ChatCre with Vglut2Flp to show that these neurons adopt a glutamatergic fate in the adult brain. The transient cholinergic phenotype of these glutamatergic neurons suggests a homosynaptic source of acetylcholine for the maturation of developing glutamatergic synapses. These findings thus define critical windows during which specific glutamatergic circuits may be vulnerable to disruption by nicotine in utero, and suggest new mechanisms for pediatric disorders associated with maternal smoking, such as sudden infant death syndrome.
Mammals must continuously regulate the levels of O and CO , which is particularly important for the brain. Failure to maintain adequate O /CO homeostasis has been associated with numerous disorders including sleep apnoea, Rett syndrome and sudden infant death syndrome. But, O /CO homeostasis poses major regulatory challenges, even in the healthy brain. Neuronal activities change in a differentiated, spatially and temporally complex manner, which is reflected in equally complex changes in O demand. This raises important questions: is oxygen sensing an emergent property, locally generated within all active neuronal networks, and/or the property of specialized O -sensitive CNS regions? Increasing evidence suggests that the regulation of the brain's redox state involves properties that are intrinsic to many networks, but that specialized regions in the brainstem orchestrate the integrated control of respiratory and cardiovascular functions. Although the levels of O in arterial blood and the CNS are very different, neuro-glial interactions and purinergic signalling are critical for both peripheral and CNS chemosensation. Indeed, the specificity of neuroglial interactions seems to determine the differential responses to O , CO and the changes in pH.
Phrenic motor facilitation (pMF), a form of respiratory plasticity, can be elicited by acute intermittent hypoxia (i.e., phrenic long-term facilitation, pLTF) or direct application of drugs to the cervical spinal cord. Moderate acute intermittent hypoxia (mAIH; 3 × 5-min episodes of 35-50 mmHg arterial Po, 5-min normoxic intervals) induces pLTF by a serotonin-dependent mechanism; mAIH-induced pLTF is abolished by mild systemic inflammation induced by a low dose of lipopolysaccharide (LPS; 100 μg/kg ip). In contrast, severe acute intermittent hypoxia (sAIH; 3 × 5-min episodes of 25-30 mmHg arterial Po, 5-min normoxic intervals) elicits pLTF by a distinct, adenosine-dependent mechanism. Since it is not known if systemic LPS blocks the mechanism giving rise to sAIH-induced pLTF, we tested the hypothesis that sAIH-induced pLTF and adenosine 2A (A) receptor-induced pMF are insensitive to mild systemic inflammation elicited by the same low dose of LPS. In agreement with our hypothesis, neither sAIH-induced pLTF nor cervical intrathecal A receptor agonist (CGS-21680; 200 μM, 10 μl × 3)-induced pMF were affected 24 h post-LPS. Pretreatment with intrathecal A receptor antagonist injections (MSX-3; 10 μM, 12 μl) blocked sAIH-induced pLTF 24 h post LPS, confirming that pLTF was adenosine dependent. Our results give insights concerning the differential impact of systemic inflammation and the functional significance of multiple cascades capable of giving rise to phrenic motor plasticity. The relative resistance of adenosine-dependent pMF to inflammation suggests that it provides a "backup" system in animals lacking serotonin-dependent pMF due to ongoing inflammation associated with systemic infections and/or neural injury. This study gives novel insights concerning how a mild systemic inflammation impacts phrenic motor plasticity (pMF), particularly adenosine-dependent pMF. We suggest that since this adenosine-dependent pathway is insensitive to systemic inflammation, it represents an alternative or "backup" mechanism of pMF when other mechanisms are suppressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.