The promise of low latency connectivity and efficient bandwidth utilization has driven the recent shift from vehicular cloud computing (VCC) towards vehicular edge computing (VEC). This paper presents an advanced deep learning-based computational offloading algorithm for multilevel vehicular edge-cloud computing networks. To conserve energy and guarantee the efficient utilization of shared resources among multiple vehicles, an integration model of computational offloading, and resource allocation is formulated as a binary optimization problem to minimize the total cost of the entire system in terms of time and energy. However, this problem is considered NP-hard and it is computationally prohibitive to solve this type of problem, particularly for large-scale vehicles, due to the curse-of-dimensionality problem. Therefore, an equivalent reinforcement learning form is generated and we propose a distributed deep learning algorithm to find the near-optimal computational offloading decisions in which a set of deep neural networks are used in parallel. Finally, simulation results show that the proposed algorithm can exhibit fast convergence and significantly reduce the overall consumption of an entire system compared to the benchmark solutions.INDEX TERMS Computation offloading, vehicular edge-cloud computing, autonomous vehicles, 5G, resource allocation, deep reinforcement learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.