This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. A c c e p t e d M a n u s c r i p t 3
AbstractMechanisms for the decomposition reaction of ethylamine, CH 3 CH 2 NH 2 , were investigated using ab initio, DFT, and RRKM calculations.Optimized geometries of reactants, transition states, intermediates, and products were determined at HF, MP2, and B3LYP levels of theory using the 6-31G(d) and 6-31+G(d) basis sets. Single point energies were also determined at G3MP2B3 and G3B3 levels of theory.Thermodynamic properties, activation energies, enthalpies and Gibbs energies of activation were calculated for each reaction pathway investigated. Intrinsic reaction coordinate (IRC) analysis was performed to characterize the transition states on the potential energy surface.The conformational change and planarity of the ethylamine moiety along with the twist angle of the amino group about the CN axis are examined. Four pathways for the decomposition reaction of ethylamine were studied. All pathways involve a 1,2-elimination reaction and 1,3-proton shift to produce ethene, ethanimine, ethenamine, and methanimine. All pathways are single-step mechanisms. Elimination of the NH 3 dominates the decomposition behaviour up to 1200 K whereas after this temperature, secession of the C-N gradually holds more importance. While pathways signifying departures of NH 3 and NH 2 exhibit pressure-dependent behaviour, branching ratios for these two channels are generally not influenced by variation in pressure higher than the atmospheric pressure.
A new Schiff base, 4-((1E,2E)-3-(furan-2-yl)allylidene)amino)-N-(5-methylisoxazol-3-yl) benzene-sulfonamide (L), was synthesized by thermal condensation of 3-(2-furyl)acrolein and sulfamethoxazole (SMX), and the furan Schiff base (L) was converted to a phenol Schiff base (L’) according to the Diels–Alder [4 + 2] cycloaddition reaction and studied experimentally. The structural and spectroscopic properties of the Schiff base were also corroborated by utilizing density functional theory (DFT) calculations. Furthermore, a series of lanthanide and transition metal complexes of the Schiff base were synthesized from the nitrate salts of Gd, Sm, Nd, and Zn (L1, L2, L3, and L4), respectively. Various spectroscopic studies confirmed the chemical structures of the Schiff-base ligand and its complexes. Based on the spectral studies, a nine-coordinated geometry was assigned to the lanthanide complexes and a six-coordinated geometry to the zinc complex. The elemental analysis data confirmed the suggested structure of the metal complexes, and the TGA studies confirmed the presence of one coordinated water molecule in the lanthanide complexes and one crystalline water molecule in the zinc complex; in addition, the conductivity showed the neutral nature of the complexes. Therefore, it is suggested that the ligand acts as a bidentate through coordinates to each metal atom by the isoxazole nitrogen and oxygen atoms of the sulfur dioxide moiety of the SMX based on FTIR studies. The ligand and its complexes were tested for their anti-inflammatory, anti-hemolytic, and antioxidant activities by various colorimetric methods. These complexes were found to exhibit potential effects of the selected biological activities.
Schiff base diethyl 4,4-(pentane-2,4-diylidenebis(azanylylidene))benzoate (1) as a new ligand (L) was prepared by the reaction of acetylacetone with benzocaine in the ratio of 1 : 1. Two transition-metal complexes, [Ni(II)(LCl(HOEt))] (2) and [Zn(II)(LCl(HOEt))] (3), have been synthesized from metal salts with didentate Schiff base ligand (L) and characterized by elemental analyses, FT-IR, 1 H NMR, 13 C NMR UV-Vis spectroscopy, and magnetic susceptibility. e biological activity of the complexes was studied. In addition, the M06-2x density function theory method and the 6-31G(d) basic set were applied to determine the optimized structures of 1-3 and to determine their IR and 1 H NMR, 13 C NMR spectra theoretically. e data are in good agreement with the experimental results. e geometries of complexes 2 and 3 were determined to be square-planar for 2 and tetrahedral for 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.