A self-tuning method to determine the appropriate parameters of a proportional-integral-derivative controller for an automatic voltage regulator (AVR) system using a biogeography-based optimization (BBO) algorithm is proposed in this study. The BBO algorithm was developed based on the theory of biogeography, which describes migration and its results. We propose that the BBO algorithm has a high-quality solution and stable convergence characteristics, and thus it improves the transient response of the controlled system. The performance of the BBO algorithm depends on the transient response, root locus, and Bode analysis. Robustness analysis is done in the AVR system, which is tuned by an artificial bee colony (ABC) algorithm in order to identify its response to changes in the system parameters. We compare the BBO algorithm with the ABC algorithm, particle swarm optimization algorithm, and differential evolution algorithm. The results of this comparison show that the BBO algorithm has a better tuning capability than the other optimization algorithms.
Diabetes is a widespread and serious disease and noninvasive measurement has been in high demand. To address this problem, a power spectral density-based method was offered for determining glucose sensitive sub-bands in the nearinfrared (NIR) spectrum. The experiments were conducted using phantoms of different optical properties in-vitro conditions. The optical bands 1200–1300[Formula: see text]nm and 2100–2200[Formula: see text]nm were found feasible for measuring blood glucose. After that, a photoplethysmography (PPG)-based low cost and portable optical system was designed. It has six different NIR wavelength LEDs for illumination and an InGaAs photodiode for detection. Optical density values were calculated through the system and used as independent variables for multiple linear regression analysis. The results of blood glucose levels for 24 known healthy subjects showed that the optical system prediction was nearly 80% in the A zone and 20% in the B zone according to the Clarke Error Grid analysis. It was shown that a promising easy-use, continuous, and compact optical system had been designed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.