BackgroundCells constantly sense many internal and environmental signals and respond through their complex signaling network, leading to particular biological outcomes. However, a systematic characterization and optimization of multi-signal responses remains a pressing challenge to traditional experimental approaches due to the arising complexity associated with the increasing number of signals and their intensities.ResultsWe established and validated a data-driven mathematical approach to systematically characterize signal-response relationships. Our results demonstrate how mathematical learning algorithms can enable systematic characterization of multi-signal induced biological activities. The proposed approach enables identification of input combinations that can result in desired biological responses. In retrospect, the results show that, unlike a single drug, a properly chosen combination of drugs can lead to a significant difference in the responses of different cell types, increasing the differential targeting of certain combinations. The successful validation of identified combinations demonstrates the power of this approach. Moreover, the approach enables examining the efficacy of all lower order mixtures of the tested signals. The approach also enables identification of system-level signaling interactions between the applied signals. Many of the signaling interactions identified were consistent with the literature, and other unknown interactions emerged.ConclusionsThis approach can facilitate development of systems biology and optimal drug combination therapies for cancer and other diseases and for understanding key interactions within the cellular network upon treatment with multiple signals.
By combining the high efficiency enrichment via our continuous flow magnetic separation (CFMS) technique with the analytical power of next-generation sequencing, we have enabled the generation of antibody mimetics with a single round of mRNA display. This approach eliminates iterative selection cycles, providing a path to fully automated ligand generation to meet the goal of a renewable, proteome-wide affinity reagent resource.
Cells serve as basic units of life and represent intricate biological molecular systems. The vast number of cellular molecules with their signaling and regulatory circuitries forms an intertwined network. In this network, each pathway interacts non-linearly with others through different intermediates. Thus, the challenge of manipulating cellular functions for desired outcomes, such as cancer eradication and controlling viral infection lies within the integrative system of regulatory circuitries. By using a closed-loop system control scheme, we can efficiently analyze biological signaling networks and manipulate their behavior through multiple stimulations on a collection of pathways. Specifically, we aimed to maximize the reactivation of Kaposi's Sarcoma-associated Herpesvirus (KSHV) in a Primary Effusion Lymphoma cell line. The advantage of this approach is that it is wellsuited to study complex integrated systems; it circumvents the need for detailed information of individual signaling components; and it investigates the network as a whole by utilizing key systemic outputs as indicators.
Combination chemotherapy with multiple drugs has been widely applied to cancer treatment due to enhanced e cacy and reduced drug resistance. For drug combination experiment analysis, response surface modeling has been commonly adopted. In this paper, we introduce a Hill-based global response surface model and provide an application of the model to a 512-run drug combination experiment with three chemicals, namely AG490, U0126, and indirubin-3’-monoxime (I-3-M), on lung cancer cells. The results demonstrate generally improved goodness of fit of our model from the traditional polynomial model, as well as the original Hill model based on fixed-ratio drug combinations. We identify different dose-effect patterns between normal and cancer cells based on our model, which indicates the potential effectiveness of the drug combination in cancer treatment. Meanwhile, drug interactions are analyzed both qualitatively and quantitatively. The distinct interaction patterns between U0126 and I-3-M on two types of cells uncovered by the model could be a further indicator of the efficacy of the drug combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.