Despite considerable efforts to identify cancer metabolic alterations that might unveil druggable vulnerabilities, systematic characterizations of metabolism as it relates to functional genomic features and associated dependencies remain uncommon. To further understand the metabolic diversity in cancer, we profiled 225 metabolites in 928 cell lines from more than 20 cancer types in the Cancer Cell Line Encyclopedia (CCLE) using liquid chromatography-mass spectrometry (LC-MS). This resource enables unbiased association analysis linking cancer metabolome to genetic alterations, epigenetic features, and gene dependencies. Additionally, by screening barcoded cell lines, we demonstrated that aberrant ASNS hypermethylation sensitizes subsets of gastric and hepatic cancers to asparaginase therapy. Finally, our analysis revealed distinct synthesis and secretion patterns of kynurenine, an immune-suppressive metabolite, in model cancer cell lines. Together, these findings and related methodology provide comprehensive resources that will help to clarify the landscape of cancer metabolism.
Accurate, high-resolution tracking of influenza epidemics at the regional level helps public health agencies make informed and proactive decisions, especially in the face of outbreaks. Internet users’ online searches offer great potential for the regional tracking of influenza. However, due to the complex data structure and reduced quality of Internet data at the regional level, few established methods provide satisfactory performance. In this article, we propose a novel method named ARGO2 (2-step Augmented Regression with GOogle data) that efficiently combines publicly available Google search data at different resolutions (national and regional) with traditional influenza surveillance data from the Centers for Disease Control and Prevention (CDC) for accurate, real-time regional tracking of influenza. ARGO2 gives very competitive performance across all US regions compared with available Internet-data-based regional influenza tracking methods, and it has achieved 30% error reduction over the best alternative method that we numerically tested for the period of March 2009 to March 2018. ARGO2 is reliable and robust, with the flexibility to incorporate additional information from other sources and resolutions, making it a powerful tool for regional influenza tracking, and potentially for tracking other social, economic, or public health events at the regional or local level.
Combination chemotherapy with multiple drugs has been widely applied to cancer treatment due to enhanced e cacy and reduced drug resistance. For drug combination experiment analysis, response surface modeling has been commonly adopted. In this paper, we introduce a Hill-based global response surface model and provide an application of the model to a 512-run drug combination experiment with three chemicals, namely AG490, U0126, and indirubin-3’-monoxime (I-3-M), on lung cancer cells. The results demonstrate generally improved goodness of fit of our model from the traditional polynomial model, as well as the original Hill model based on fixed-ratio drug combinations. We identify different dose-effect patterns between normal and cancer cells based on our model, which indicates the potential effectiveness of the drug combination in cancer treatment. Meanwhile, drug interactions are analyzed both qualitatively and quantitatively. The distinct interaction patterns between U0126 and I-3-M on two types of cells uncovered by the model could be a further indicator of the efficacy of the drug combination.
For epidemics control and prevention, timely insights of potential hot spots are invaluable. Alternative to traditional epidemic surveillance, which often lags behind real time by weeks, big data from the Internet provide important information of the current epidemic trends. Here we present a methodology, ARGOX (Augmented Regression with GOogle data CROSS space), for accurate real-time tracking of state-level influenza epidemics in the United States. ARGOX combines Internet search data at the national, regional and state levels with traditional influenza surveillance data from the Centers for Disease Control and Prevention, and accounts for both the spatial correlation structure of state-level influenza activities and the evolution of people’s Internet search pattern. ARGOX achieves on average 28% error reduction over the best alternative for real-time state-level influenza estimation for 2014 to 2020. ARGOX is robust and reliable and can be potentially applied to track county- and city-level influenza activity and other infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.