Many business applications rely on their historical data to predict their business future. The marketing products process is one of the core processes for the business. Customer needs give a useful piece of information that helps to market the appropriate products at the appropriate time. Moreover, services are considered recently as products. The development of education and health services is depending on historical data. For the more, reducing online social media networks problems and crimes need a significant source of information. Data analysts need to use an efficient classification algorithm to predict the future of such businesses. However, dealing with a huge quantity of data requires great time to process. Data mining involves many useful techniques that are used to predict statistical data in a variety of business applications. The classification technique is one of the most widely used with a variety of algorithms. In this paper, various classification algorithms are revised in terms of accuracy in different areas of data mining applications. A comprehensive analysis is made after delegated reading of 20 papers in the literature. This paper aims to help data analysts to choose the most suitable classification algorithm for different business applications including business in general, online social media networks, agriculture, health, and education. Results show FFBPN is the most accurate algorithm in the business domain. The Random Forest algorithm is the most accurate in classifying online social networks (OSN) activities. Naïve Bayes algorithm is the most accurate to classify agriculture datasets. OneR is the most accurate algorithm to classify instances within the health domain. The C4.5 Decision Tree algorithm is the most accurate to classify students' records to predict degree completion time.
Several malware variants have attacked systems and data over time. Ransomware is among the most harmful malware since it causes huge losses. In order to get a ransom, ransomware is software that locks the victim’s machine or encrypts his personal information. Numerous research has been conducted to stop and quickly recognize ransomware attacks. For proactive forecasting, artificial intelligence (AI) techniques are used. Traditional machine learning/deep learning (ML/DL) techniques, however, take a lot of time and decrease the accuracy and latency performance of network monitoring. In this study, we utilized the Hoeffding trees classifier as one of the stream data mining classification techniques to detect and prevent ransomware attacks. Three Hoeffding trees classifier algorithms are selected to be applied to the Resilient Information Systems Security (RISS) research group dataset. After configuration, Massive Online Analysis (MOA) software is utilized as a testing framework. The results of Hoeffding tree classifier algorithms are then assessed to choose the enhanced model with the highest accuracy and latency performance. In conclusion, the 99.41% classification accuracy was the highest result achieved by the EFDT algorithm in 66 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.