Expression of cyclooxygenase 2 (COX2, now known as PTGS2), prostaglandin E2 synthase (PTGES, PGES), and prostaglandin F2a synthase (PGFS), of the respective receptors PTGFR (FP), PTGER2 (EP2), and PTGER4 (EP4) and of the progesterone receptor (PGR, PR) was assessed by real-time PCR, immunohistochemistry (IHC), or in situ hybridization (ISH) in utero/placental tissue samples collected from three to five bitches on days 8-12 (pre-implantation), 18-25 (post-implantation), and 35-40 (mid-gestation) of pregnancy and during the prepartal luteolysis. Additionally, ten mid-pregnant bitches were treated with the antiprogestin aglepristone (10 mg/kg bw (2!/24 h)); ovariohysterectomy was 24 and 72 h after the second treatment. Plasma progesterone and 15-ketodihydro-PGF2a (PGFM) concentrations were determined by RIA. Expression of the PGR was highest before implantation and primarily located to the endometrium; expression in the placenta was restricted to the decidual cells. PTGS2 was constantly low expressed until mid-gestation; a strong upregulation occurred at prepartal luteolysis concomitant with an increase in PGFM. PGFS was upregulated after implantation and significantly elevated through early and mid-gestation. PTGES showed a gradual increase and a strong prepartal upregulation. PTGFR, PTGER2, and PTGER4 were downregulated after implantation; a gradual upregulation of PTGFR and PTGER2 occurred towards parturition. ISH and IHC co-localized PGFS, PTGFR, PTGES, and PTGS2 in the trophoblast and endometrium. The changes following application of aglepristone were in the same direction as those observed from mid-gestation to prepartal luteolysis. These data suggest that the prepartal increase of PGF2a results from a strong upregulation of PTGS2 in the fetal trophoblast with the withdrawal of progesterone having a signalling function and the decidual cells playing a key role in the underlying cell-to-cell crosstalk.
For many years, modifications of the uterine extracellular matrix (ECM) during gestation have not been considered as critical for successful canine () pregnancy. However, previous reports indicated an effect of free-floating blastocysts on the composition of the uterine ECM. Here, the expression of selected genes involved in structural functions, cell-to-cell communication and inhibition of matrix metalloproteinases were targeted utilizing qPCR and immunohistochemistry. We found that canine free-floating embryos affect gene expression of , and This seems to be associated with modulation of trophoblast invasion, and proliferative and adhesive functions of the uterus. Although not modulated at the beginning of pregnancy, the decrease of structural ECM components (i.e., , and ) from pre-implantation toward post-implantation at placentation sites appears to be associated with softening of the tissue in preparation for trophoblast invasion. The further decrease of these components at placentation sites at the time of prepartum luteolysis seems to be associated with preparation for the release of fetal membranes. Reflecting a high degree of communication, intercellular cell adhesion molecules are induced following placentation () or increase gradually toward prepartum luteolysis (). The spatio-temporal expression of TIMPs suggests their active involvement in modulating fetal invasiveness, and together with , they appear to protect deeper endometrial structures from trophoblast invasion. With this, the dog appears to be an interesting model for investigating placental functions in other species, e.g. in humans in which appears to share several similarities with canine subinvolution of placental sites (SIPS). In summary, the canine uterine ECM is only moderately modified in early pregnancy, but undergoes vigorous reorganization processes in the uterus and placenta following implantation.
In the present study, 13 clinical cases of canine mammary adenocarcinoma were evaluated in order to understand the effect of Tarantula cubensis extract (TCE) on tumor tissue. Punch biopsies were taken from the tumors before treatment with TCE. Subcutaneous injections of TCE were administered three times at weekly intervals (3 mL per dog). Between days 7 and 10 after the third injection, the tumor masses were extirpated by complete unilateral mastectomy. Pre- and post-treatment tumor tissues were immunohistochemically assessed. The expression of B-cell lymphoma 2 (Bcl-2) was found to be higher in pre-treatment compared to post-treatment tissues (p < 0.01) whereas Ki-67 expression was lower in post-treatment tissues (p < 0.01). No significant differences in fibroblast growth factor or vascular endothelial growth factor expression were observed between pre- and post-treatment tissues (p > 0.05). The apoptotic index was determined to be low before treatment and increased during treatment. These results suggest that TCE may be effective for controlling the local growth of canine mammary adenocarcinoma by regulating apoptosis.
The aim of this study was to investigate characterization of oestrous response, onset of induced oestrus, oestrous duration, fecundity and fertility in Awassi ewes treatment with intravaginal sponges and Controlled Intravaginal Drug Release (CIDR) devices in combination with pregnant mare serum gonadotropin (PMSG) under local environmental conditions during the non-breeding season. A total of 62 ewes were divided into three groups. Group CIDR (n = 20) was treated with CIDR devices for 12 days and 400 IU PMSG was injected upon removal of the CIDR. For ewes in Group Sponge (SP) (n = 24), 30 mg fluorogestone acetate was administered to the sheep for 12 days and 400 IU PMSG was injected upon withdrawal of the sponge. Group Control (CON) (n = 18) served as a control group and received no treatment. Adult, intact and sexually experienced Awassi rams were introduced to all groups at the time when the intravaginal devices were removed. There were no significant differences in terms of oestrous response (CIDR: 90%, SP: 87.5%), time to onset of oestrus and duration of induced oestrus between the CIDR and SP groups. The oestrous response of treatment groups was significantly greater (p < 0.05) than in the control ewes. There were no significant differences in pregnancy (CIDR: 70%, SP: 70.8%), lambing (CIDR: 85%, SP: 79.2%) and fecundity rates between ewes treated with CIDR and those treated with sponges. However, pregnancy and lambing rates were significantly (p < 0.05) higher in ewes treated with CIDR or sponges when compared with those in the control group. It was concluded that it is possible to induce fertile oestrus, successful pregnancy and lambing with the treatment of either CIDR or intravaginal sponge in combination with PMSG in Awassi ewes during the non-breeding season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.