BackgroundDate palm (Phoenix dactylifera L.), a member of Arecaceae family, is one of the three major economically important woody palms—the two other palms being oil palm and coconut tree—and its fruit is a staple food among Middle East and North African nations, as well as many other tropical and subtropical regions. Here we report a complete sequence of the data palm chloroplast (cp) genome based on pyrosequencing.Methodology/Principal FindingsAfter extracting 369,022 cp sequencing reads from our whole-genome-shotgun data, we put together an assembly and validated it with intensive PCR-based verification, coupled with PCR product sequencing. The date palm cp genome is 158,462 bp in length and has a typical quadripartite structure of the large (LSC, 86,198 bp) and small single-copy (SSC, 17,712 bp) regions separated by a pair of inverted repeats (IRs, 27,276 bp). Similar to what has been found among most angiosperms, the date palm cp genome harbors 112 unique genes and 19 duplicated fragments in the IR regions. The junctions between LSC/IRs and SSC/IRs show different features of sequence expansion in evolution. We identified 78 SNPs as major intravarietal polymorphisms within the population of a specific cp genome, most of which were located in genes with vital functions. Based on RNA-sequencing data, we also found 18 polycistronic transcription units and three highly expression-biased genes—atpF, trnA-UGC, and rrn23. ConclusionsUnlike most monocots, date palm has a typical cp genome similar to that of tobacco—with little rearrangement and gene loss or gain. High-throughput sequencing technology facilitates the identification of intravarietal variations in cp genomes among different cultivars. Moreover, transcriptomic analysis of cp genes provides clues for uncovering regulatory mechanisms of transcription and translation in chloroplasts.
Date palm (Phoenix dactylifera L.) is a cultivated woody plant species with agricultural and economic importance. Here we report a genome assembly for an elite variety (Khalas), which is 605.4 Mb in size and covers >90% of the genome (~671 Mb) and >96% of its genes (~41,660 genes). Genomic sequence analysis demonstrates that P. dactylifera experienced a clear genome-wide duplication after either ancient whole genome duplications or massive segmental duplications. Genetic diversity analysis indicates that its stress resistance and sugar metabolism-related genes tend to be enriched in the chromosomal regions where the density of single-nucleotide polymorphisms is relatively low. Using transcriptomic data, we also illustrate the date palm’s unique sugar metabolism that underlies fruit development and ripening. Our large-scale genomic and transcriptomic data pave the way for further genomic studies not only on P. dactylifera but also other Arecaceae plants.
Based on next-generation sequencing data, we assembled the mitochondrial (mt) genome of date palm (Phoenix dactylifera L.) into a circular molecule of 715,001 bp in length. The mt genome of P. dactylifera encodes 38 proteins, 30 tRNAs, and 3 ribosomal RNAs, which constitute a gene content of 6.5% (46,770 bp) over the full length. The rest, 93.5% of the genome sequence, is comprised of cp (chloroplast)-derived (10.3% with respect to the whole genome length) and non-coding sequences. In the non-coding regions, there are 0.33% tandem and 2.3% long repeats. Our transcriptomic data from eight tissues (root, seed, bud, fruit, green leaf, yellow leaf, female flower, and male flower) showed higher gene expression levels in male flower, root, bud, and female flower, as compared to four other tissues. We identified 120 potential SNPs among three date palm cultivars (Khalas, Fahal, and Sukry), and successfully found seven SNPs in the coding sequences. A phylogenetic analysis, based on 22 conserved genes of 15 representative plant mitochondria, showed that P. dactylifera positions at the root of all sequenced monocot mt genomes. In addition, consistent with previous discoveries, there are three co-transcribed gene clusters–18S-5S rRNA, rps3-rpl16 and nad3-rps12–in P. dactylifera, which are highly conserved among all known mitochondrial genomes of angiosperms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.