Trigeminal neuralgia (TN) is most commonly caused by vascular compression of the trigeminal nerve root entry zone. Secondary trigeminal neuralgia due to ischemic lesion of the pons is very rare. Here we report a patient with a pontine infarct transecting the central trigeminal pathways resulting with trigeminal neuralgia.
Schwannomas are the most frequent primary tumors of the spine with an incidence of 0.3–0.5/100,000 person per year. Current treatment for non-syndromic spinal schwannomas is total resection of the tumor with preservation of neurovascular structures. This study aims to report neurologic and radiologic outcome following treatment of non-syndromic spinal schwannomas along with a novel tumor classification used in our clinic. A retrospective case series was carried out with a patient sample of 82 male and female patients with non-syndromic spinal schwannomas. All patient data were retrospectively collected from the hospital records. As a routine procedure, after admittance and primary evaluation, patients’ tumors were classified using CT or MRI in accordance with our proposed classification method, which employs a dual designation method with tree groups (A, B, and C) for tumor volume and four types (I, II, III, and IV) for tumor localization. Subsequent resection surgery was followed by neurological assessments and follow up at 45th, 180th, and 360th postoperative day. Along with Karnofsky performance status scale, pain, sensory deficits, and motor weakness were scored to assess neurologic recovery. Our finding indicates that patients with different tumor types significantly differ in their neurological scores and show consistent but differential neurological recovery at early and late time points postsurgery. Complications during and postsurgery were minimal, occurring only in two patients. Our findings further reinforce the established safety of total resection operations and indicate that our proposed classification is a simple, effective tool that has proven helpful in preoperative planning and avoiding unnecessary surgical approaches.
The aim of this study was to evaluate how timing of irradiation after brain surgery in rats relates to overall extent of brain radiation damage. Extent of injury was determined according to lipid peroxidation (malondialdehyde; MDA) levels in brain tissue. Thirty female rats were randomly assigned to five equal groups (Groups A-E). Four groups underwent trephination and scalpel hemisection of right frontal lobe. Rats in Groups B and D received 25 Gy cranial irradiation in a LINAC system at 10 and 20 days after surgery, respectively. Twenty-four hours later they were killed and their right frontal lobes were removed for lipid peroxidation determination. Groups A and C were not irradiated; these groups were killed and had their frontal lobes removed on day 11 and day 21 post-surgery, respectively. The remaining six animals (Group E, sham surgery) underwent trephination only, and were killed and had their frontal lobes removed 24 h later. There was a significant difference between the mean MDA levels in the control group and Group D, and between the levels in Group B and Group D (P < 0.05 for both). The difference between the mean for Group A and the mean for Group B was even more significant (P < 0.01). The most striking differences were between the control group and Group B, and between Group B and Group C (P < 0.001 for both). The data from this rat model suggest that, in humans, starting radiotherapy early (1-2 weeks) after debulking of a brain tumor may result in significantly higher levels of tissue damage than if the radiation is started 3 weeks or more postoperatively. Further experimental research is needed to project these findings in rats to human subjects.
AimWe report the preoperative and postoperative findings and also neurological follow-up results from 10 spinal cavernoma patients treated in our clinic. Several representative cases are presented in terms of clinical features, imaging results, and surgical outcomes.Material and methodsThe data were retrospectively collected from patients’ files in the hospital records and sorted with regards to clinical presentation, radiologic features, and operative findings. Patients received spinal MRI scans for the diagnosis of spinal cavernomas (SC) and postsurgical evaluation. Clinical presentation was evaluated via Ogilvy classification and symptoms were checked preoperatively and postoperatively at third month and first year using McCormick scale. Primary treatment was microsurgical operation aiming a gross total lesion resection.Results10 spinal cavernoma patients between the ages 30 and 63 were treated. Six (60%) of the patients were diagnosed with cervical and four (40%) others were diagnosed with thoracic SC. Among the patient group, mean preoperative Ogilvy classification score was 2.3 ± 0.7.8 and McCormick score was 1.9 ± 0.7. There was no residual mass or relapse after surgery. One patient developed surgery-related left hemiparesis, which was normalized at 1 year follow-up.ConclusionPatients must be diagnosed with MRI since it is nowadays a gold standard. Preoperative and postoperative scores are important in evaluating the patients’ condition and improvement. The results from our patient series also reinforce the notion that immediate surgery should be the preferred treatment method for cavernomas. Intraoperative neurophysiologic monitarization should assist the surgery in order to prevent complications. In conclusion, microsurgery is a gold standard method that we recommend for cases of cavernomas, which will not recur if gross total resection is achieved.
Deep brain stimulation (DBS) surgery of the subthalamic nucleus (STN) under general anesthesia (GA) had been used in Parkinson's disease (PD) patients who are unable tolerate awake surgery. The effect of anesthetics on intraoperative microelectrode recording (MER) remains unclear. Understanding the effect of anesthetics on MER is important in performing STN DBS surgery with general anesthesia. In this study, we retrospectively performed qualitive and quantitative analysis of STN MER in PD patients received STN DBS with controlled desflurane anesthesia or LA and compared their clinical outcome. From January 2005 to March 2006, 19 consecutive PD patients received bilateral STN DBS surgery in Hualien Tzu-Chi hospital under either desflurane GA (n = 10) or LA (n = 9). We used spike analysis (frequency and modified burst index [MBI]) and the Hilbert transform to obtain signal power measurements for background and spikes, and compared the characterizations of intraoperative microelectrode signals between the two groups. Additionally, STN firing pattern characteristics were determined using a combined approach based on the autocorrelogram and power spectral analysis, which was employed to investigate differences in the oscillatory activities between the groups. Clinical outcomes were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) before and after surgery. The results revealed burst firing was observed in both groups. The firing frequencies were greater in the LA group and MBI was comparable in both groups. Both the background and spikes were of significantly greater power in the LA group. The power spectra of the autocorrelograms were significantly higher in the GA group between 4 and 8 Hz. Clinical outcomes based on the UPDRS were comparable in both groups before and after DBS surgery. Under controlled light desflurane GA, burst features of the neuronal firing patterns are preserved in the STN, but power is reduced. Enhanced low-frequency (4–8 Hz) oscillations in the MERs for the GA group could be a characteristic signature of desflurane's effect on neurons in the STN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.