To cope with the shortage of filtering facepiece respirators (FFRs) during the coronavirus (COVID-19) pandemic, healthcare institutions were forced to reuse FFRs after applying different decontamination methods including gamma-irradiation (GIR). The aim of this study was to evaluate the effect of GIR on the filtration efficiency (FE) of FFRs and on SARS-CoV-2 detection. The FE of 2 FFRs types (KN95 and N95-3 M masks) was assessed at different particle sizes (0.3–5 µm) following GIR (0–15 kGy) delivered at either typical (1.65 kGy/h) or low (0.5088 kGy/h) dose rates. The detection of two SARS-CoV-2 RNA genes (E and RdRp4) following GIR (0–50 kGy) was carried out using RT-qPCR assay. Both masks showed an overall significant (P < 0.001) reduction in FE with increased GIR doses. No significant differences were observed between GIR dose rates on FE. The GIR exhibited significant increases (P ≤ 0.001) in the cycle threshold values (ΔCt) of both genes, with no detection following high doses. In conclusion, complete degradation of SARS-CoV-2 RNA can be achieved by high GIR (≥ 30 kGy), suggesting its potential use in FFRs decontamination. However, GIR exhibited adverse effects on FE in dose- and particle size-dependent manners, rendering its use to decontaminate FFRs debatable.
This study aimed to understand the pathophysiology of host responses to infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/(COVID-19) and Middle East respiratory syndrome coronavirus (MERS-CoV) and to identify proteins for patient stratification with different grades of illness severity. Patients and Methods: Peripheral blood samples from 43 patients with different grades of COVID-19, 7 MERS-CoV patients admitted to the ICU, and 10 healthy subjects were analyzed using label-free quantitative liquid chromatography-mass spectrometry (LC-MS). Results: We identified 193 and 91 proteins that differed significantly between COVID-19 and MERS-CoV sample groups, respectively, and 49 overlapped between datasets. Only 10 proteins are diagnostic of asymptomatic cases, 12 are prognostic of recovery from severe illness, and 28 are prognostic of a fatal outcome of COVID-19. These proteins are implicated in virus-specific/related signaling networks. Notable among the top canonical pathways are humoral immunity, inflammation, acute-phase response signaling, liver X receptor/retinoid X receptor (LXR/RXR) activation, coagulation, and the complement system. Furthermore, we confirmed positive viral shedding in 11.76% of 51 additional peripheral blood samples, indicating that caution should be taken to avoid the possible risk of transfusion of infected blood products.
Conclusion:We identified COVID-19 and MERS-CoV protein panels that have potential as biomarkers and might assist in the prognosis of SARS-CoV-2 infection. The identified markers further our understanding of COVID-19 disease pathophysiology and may have prognostic or therapeutic potential in predicting or managing host cell responses to human COVID-19 and MERS-CoV infections.
SAMHD1, a human host factor found in myeloid cells which restricts HIV-1 replication. It depletes the dNTPs pool for viral cDNA syntheses, thus preventing the viral replication in the cells. The viral accessory protein, Vpx, exists only in SIVmac/HIV-2 particles. Vpx in SIVmac can induce proteosomal degradation of SAMHD1, which then leads to a decrease in the cytoplasmic dNTP pool. The protein–protein interaction between Vpx and SAMHD1 and its consequences are still unclear. Methods: In this study, we cloned, for the first time, Vpx gene from a HIV-2 infected patient and found up to 30% sequence variation compared to known HIV-2 strains. We then analyzed the role of SAMHD1 protein expression in transfected THP-1 and U937 cells by transfecting with the Vpx gene derived from SIVmac, HIV-2 from the NIH sample as well as HIV-2 from a Saudi patient. We found that Vpx gene expression led to reduced levels of intracellular SAMHD1. When the supernatants of the transfected cell lines were examined for secreted cytokines, chemokines and growth factors, Vpx expression seemed to be suppressive of pro-inflammatory response, and skewed the immune response towards an anti-inflammatory response. These results suggest that Vpx can act at two levels: clearance of intracellular restriction factor and suppression of cytokine storm: both aimed at long-term latency and host–pathogen stand-off, suggesting that Vpx is likely to be a potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.