Many lower vertebrates exhibit colour change in response to the background. A dual hormonal control of colour change by two antagonistic pituitary melanophorotropic hormones was first postulated in amphibia by Hogben and Slome. It is well established that the melanotropins alpha- and beta-MSH are responsible for pigment dispersion in the integumentary melanophore of lower vertebrates and that these molecules are derived from a common precursor protein, proopiocortin, by specific processing within the intermediate lobe. No evidence has been found for an antagonistic hormone in amphibia, although the existence of such a molecule in the pituitary gland of teleost fishes has long been recognized and was termed the melanophore-concentrating hormone by Enami. Early attempts to separate the two hormones proved unsuccessful. Recently, Baker and Ball re-invoked the dual hormone concept, and it has been suggested that a melanin-concentrating hormone (MCH) is synthesized in the hypothalamus of teleosts and stored and released by the neurohyphophysis. We have now isolated a novel peptide from the pituitary of the salmon (Oncorhynchus keta) possessing an antagonistic function to MSH, and we describe here its chemical and biological characteristics.
In Crustacea, reproductive function and mechanisms regulating vitellogenesis have not been fully elucidated. This is due in great part to a lack of information concerning the biochemical nature of the vitellogenin molecule, the hemolymph precursor of yolk protein, vitellin, as well as the functional expression of the vitellogenin-encoding gene. We have therefore cloned a cDNA encoding vitellogenin in the kuruma prawn, Penaeus japonicus based on the N-terminal amino acid sequence of the 91 kDa subunit of vitellin. The open reading frame of this cDNA encoded 2,587 amino acid residues. This is the first investigation reporting a full-length cDNA and its corresponding amino acid sequence for vitellogenin in any crustacean species.Northern blot analysis and in situ hybridization have revealed that mRNA encoding vitellogenin was expressed in both the follicle cells in the ovary and the parenchymal cells in the hepatopancreas. In nonvitellogenic females, vitellogenin mRNA levels were negligible in both the ovary and hepatopancreas, but in vitellogenic females, levels were dramatically increased in both tissues. In the ovary, highest levels were observed during the early exogenous vitellogenic stage, and thereafter rapidly decreased, whereas in the hepatopancreas, high levels were maintained until the onset of the late vitellogenic stage. Differing profiles of vitellogenin mRNA levels in the ovary and hepatopancreas suggest that the contribution of these tissues to vitellogenin synthesis harbor separate and complementary roles during vitellogenesis.
A cDNA encoding vitellogenin (Vg) in the giant freshwater prawn, Macrobrachium rosenbergii, was cloned based on the cDNA sequence of vitellin (Vn) fragments A-N and B-42 determined previously, and its amino acid sequence deduced. The open reading frame (ORF) encoded 2,537 amino acid residues and its deduced amino acid sequence possessed three consensus cleavage sites, R-X-R-R, similar to those reported in Vgs of insects. The deduced primary structure of Vg in M. rosenbergii was seen to be similar to that of Penaeus japonicus, especially in the N-terminal region. It is therefore likely that Vgs in crustacean species including prawns and other related decapods exhibit a similar structural pattern. Based on the deduced primary structure of Vg and analysis of the various Vg and Vn subunits found in the hemolymph and ovary during ovarian maturation, we demonstrated the post-translational processing of Vg in M. rosenbergii. This is the first time that Vg processing has been clearly demonstrated in a crustacean species. Vg, after being synthesized in the hepatopancreas, is considered to be cleaved by a subtilisin-like endoprotease to form two subunits, A and proB, which are then released into the hemolymph. In the hemolymph, proB is possibly cleaved by a processing enzyme of unknown identity to give rise to subunits B and C/D. The three processed subunits A, B, and C/D are sequestered by the ovary to give rise to three yolk proteins, Macr-VnA, VnB, and VnC/D.
Vitellogenesis-inhibiting hormone (VIH) in Crustacea belongs to the crustacean hyperglycemic hormone (CHH)-family. To characterize multiple VIH molecules in the whiteleg shrimp Litopenaeus vannamei, seven CHH-family peptides designated as Liv-SGP-A, -B, -C, -D, -E, -F, and -G were purified by reversed-phase HPLC and identified by N-terminal amino acid sequencing. The dose-response effects of these peptides on vitellogenin mRNA levels were examined using in vitro incubation of ovarian fragments of the kuruma prawn Marsupenaeus japonicus. Liv-SGP-D showed no significant inhibitory activities, while the other six peptides significantly reduced vitellogenin mRNA levels, however, with differing efficacies, in the order of Liv-SGP-C, -F, -G > -A, -B > -E. Liv-SGP-G was the most abundant CHH-family peptide in the sinus gland and showed strong vitellogenesis-inhibiting activity. As a result of detailed structural analysis, its complete primary structure was determined; it consisted of 72 amino acid residues and possesses an amidated C-terminus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.