A cDNA encoding vitellogenin (Vg) in the giant freshwater prawn, Macrobrachium rosenbergii, was cloned based on the cDNA sequence of vitellin (Vn) fragments A-N and B-42 determined previously, and its amino acid sequence deduced. The open reading frame (ORF) encoded 2,537 amino acid residues and its deduced amino acid sequence possessed three consensus cleavage sites, R-X-R-R, similar to those reported in Vgs of insects. The deduced primary structure of Vg in M. rosenbergii was seen to be similar to that of Penaeus japonicus, especially in the N-terminal region. It is therefore likely that Vgs in crustacean species including prawns and other related decapods exhibit a similar structural pattern. Based on the deduced primary structure of Vg and analysis of the various Vg and Vn subunits found in the hemolymph and ovary during ovarian maturation, we demonstrated the post-translational processing of Vg in M. rosenbergii. This is the first time that Vg processing has been clearly demonstrated in a crustacean species. Vg, after being synthesized in the hepatopancreas, is considered to be cleaved by a subtilisin-like endoprotease to form two subunits, A and proB, which are then released into the hemolymph. In the hemolymph, proB is possibly cleaved by a processing enzyme of unknown identity to give rise to subunits B and C/D. The three processed subunits A, B, and C/D are sequestered by the ovary to give rise to three yolk proteins, Macr-VnA, VnB, and VnC/D.
The dynamics of vitellogenin mRNA expression during ovarian maturation in Macrobrachium rosenbergii were examined by measuring hemolymph vitellogenin (Vg) levels and Vg mRNA expression in the hepatopancreas and ovary at differing reproductive stages in both intact and eyestalk ablated animals. Vg mRNA was quantified using real-time RT-PCR and hemolymph Vg was measured by enzyme immunoassay. In intact animals, Vg mRNA levels in the hepatopancreas and hemolymph Vg levels showed a gradual increase during the molt cycle concomitant with increasing gonadosomatic index (GSI), with Vg levels decreasing prior to ecdysis although GSI continued to increase. Eyestalk ablation was seen to accelerate Vg synthesis as well as ovarian maturation, although it did not alter the overall pattern of Vg expression. Vg mRNA expression was negligible in the ovary of both intact and eyestalk ablated animals, confirming that the hepatopancreas is the principal site of Vg synthesis in M. rosenbergii with the ovary being only a minor contributor. This study has shown that Vg synthesis is correlated to ovarian maturation and the molt cycle in M. rosenbergii.
Vitellogenesis in crustaceans is an energy-consuming process. Though the underlying mechanisms of ovarian maturation in decapod Crustacea are still unclear, evidence indicates the process to be regulated by antagonistically-acting inhibitory and stimulating factors specifically originating from X-organ/sinus gland (XO/SG) complex. Among the reported neuromediators, neuropeptides belonging to the crustacean hyperglycemic hormone (CHH)-family have been studied extensively. The structure and dynamics of inhibitory action of vitellogenesis-inhibiting hormone (VIH) on vitellogenesis have been demonstrated in several species. Similarly, the stimulatory effects of other neuropeptides of the CHH-family on crustacean vitellogenesis have also been validated. Advancement in transcriptomic sequencing and comparative genome analysis has led to the discovery of a large number of neuromediators, peptides, and putative peptide receptors having pleiotropic and novel functions in decapod reproduction. Furthermore, differing research strategies have indicated that neurotransmitters and steroid hormones play an integrative role by stimulating neuropeptide secretion, thus demonstrating the complex intertwining of regulatory factors in reproduction. However, the molecular mechanisms by which the combinatorial effect of eyestalk hormones, neuromediators and other factors coordinate to regulate ovarian maturation remain elusive. These multifunctional substances are speculated to control ovarian maturation possibly via the autocrine/paracrine pathway by acting directly on the gonads or by indirectly exerting their stimulatory effects by triggering the release of a putative gonad stimulating factor from the thoracic ganglion. Acting through receptors, they possibly affect levels of cyclic nucleotides (cAMP and cGMP) and Ca
2+
in target tissues leading to the regulation of vitellogenesis. The “stimulatory paradox” effect of eyestalk ablation on ovarian maturation continues to be exploited in commercial aquaculture operations, and is outweighed by the detrimental physiological effects of this procedure. In this regard, the development of efficient alternatives to eyestalk ablation based on scientific knowledge is a necessity. In this article, we focus principally on the signaling pathways of positive neuromediators and other factors regulating crustacean reproduction, providing an overview of their proposed receptor-mediated stimulatory mechanisms, intracellular signaling, and probable interaction with other hormonal signals. Finally, we provide insight into future research directions on crustacean reproduction as well as potential applications of such research to aquaculture technology development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.